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FOREWORD

The research project outlined in this report was initiated in May 1966
by the Flight Dynamics Laboratory, Directorate of Laboratories, Wright-
Patterson Air Force Base, Ohio. This report was prepared by the Engineering
Technology Division, McDonnell Douglas Corporation, St. Louis, Missouri,
under USAF Contract No. AF33(615)-3932, Project No. 1431 "Flight Patn
Analysis," Task No. 03 "Application of Mathematical Techniques to Flight
Path Analysis." The contract was initiated under BPSN No. 6(631431-62405364).
Mr. R. C. Nash (FDMG) of the Air Force Flight Dynamics Laboratory is the
cognizant Air Force representative. This report has been prepared by Mr.
L. D. Peterson of the Engineering Technology Division, McDonnell Douglas
Corporation.

The author wishes to express his gratitude to Mr. G. G. Grose, the
project leader, Mr. Don Lewellyn and Dr. Roland D. Turner of the McDonnell
Douglas Corporation for their continuous support and valuable suggestions;
to Mrs. Jewel Bernard for her assistance in preparation of this report; and
to Mr. K. E. Gieb, Mr. R. V. Helgason, Mr. H. E. Schmidt, and Mr. J. L.
Witherspoon of the McDonnell Automation Company for programming and, in the
process, improving this formulation.

This project has resulted in an extension to the analytical development
of the Method of Steepest Descent and to the Generalized Steepest Descent
Computer Program which were documented in References 1 and 2. In preparation
of this report material from References 1, 3, and 4 was freely used without
any attempt to credit the individual sections. These results are documented in
this report in three volumes. This volume contains the formulation.
"Volume II, User's Manual" contains the information needed by an analyst for
data setup and application of the program. "Volume III, Programmer's
Manual" contains the information needed by a programmer, such as program
organization, a program listing, and details of the subroutines.

This report was submitted by the authors on 24 May 1967.

This technical report has been reviewed and is approved.

4 PHILIP P. ANTOTOS

Chief, Flight ec anics Division
Air Force Flight Dynamics Laboratory
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ABSTRACT

Trajectory optimization by the method of steepest descent has been dis-
cussed in detail. The method has been generalized so that it has the ability
to do the following:

1) Search for optimum initial values of the state variables.

2) Search for optimum time to stage.

3) Satisfy constraints which are functions of the state variables at
the end of any stage.

4) Optimize functions of state variables at the end of any stage.

5) Search for optimum values of certain design parameters.

A Generalized Steepest Descent computer program has been programmed for
the CDC 6000 Series Computer in the Fortran IV language. In its basic form
the program is set up to handle the three dimensional, point mass, vehicle
flight path trajectory optimization problem. The program is capable of
simultaneously handling up to fifteen state variables, six control variables
and ten constraints. Most of the usual functions required in flight path
studies are available within the program; others may be added as desired by
simple program additions, providing the function or its derivative is defined
analytically. The program may be readily extended to cover steepest descent
optimization problems in other fields, by the replacement of the basic dif-
ferential equation subroutine by any other set of equations of the same
general type. Convergence to the optimal solution is obtained automatically
by means of one of two control systems which, by a series of logical deci-
sions, obtain a reasonable perturbation magnitude at each iteration.

This abstract is subject to special export controls and each transmittal
to foreign governments or foreign nationals may be made only with the approval
of AFFDL (FDMG), WPAFB, Ohio 45433.
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SYMBOLS

A Atmosphere temperature constant (eq. 333).

A Non-dimensional acceleration dose.

A Acceleration dose with damping function.

A Rocket nozzle exit area
e

A. Missile range constants (i=1-12).

A.. Weighting matrix constants.

5
A. Constants in structural weight equation; rubber

1 booster (i=1-4).

AR Constant in equation for R (eq. 401).

AT Line of sight vector; maneuvering target.

A . External inert rocket mass flow.

A(t) Time derivative of non-dimensional acceleration dose.

1. AZ Factor in compressibility curve fit (eq. 418).

a Axial force along x axis; body axis system (Fig. 30).

a Non-continuum heat transfer parameter.

a Speed of sound.

a Semimajor axis; orbital parameters.

a, a(t) Instantaneous acceleration.

@a Acceleration in direction n (eq. 352).
- 'n

a 2  Local speed of sound.

a' Term in low Reynolds number stagnation heating

correction (eq. 382).

B Atmosphere temperature constant (eq. 333).

BA Bank angle (Fig. 18).

B. Missile range constants (i=l-ll).

B.. Weighting matrix constants.

C Change in longitude of vehicle (0 - 9L).

L Lxi
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-~C The C iteration in a staepest descent method

C Atmosphere temperature constant (eq. 333).

C~C Axial aerodynamic force coefficient, body axis
system.

0 OAxial. aerodynamic force coefficient for a 0 0.

C~c

CA2

C A Aerodynamic axial force slopes (eq. 289b).

CA2

C AB

CD Aerodynamic drag force coefficient, wind axis system.

C Drag force coefficient for a 8 0.

D

CD

a

D 2

~Z~< I CAerodynamic drag force slopes (eq. 287b).

CD2

C~a

C. Perturbation mode coefficients.

C.. Weighting matrix constants.

2 Aeoyai itfoc ofiin, idai ytm

L

C Lift force coefficient for a =8 0.
CL
0

xii
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~T ,

CL
Lr 2

C 2Aerodynamic lift force slopes (eq. 287a).¢L

L 2
CL8 /

CN Aerodynamic normal force coefficient, body axis system.

CN Normal force coefficient for a = 8 = 0.

"N0

N2
aCN 2

CN Aerodynamic normal force slopes (eq. 289a).CN2

CN 2

Cp Specific heat at constant pressure.

C Pressure coefficient.
pSpecific heat of nose material.

e

Cp Specific heat of wing skin material.
5s

C Specific heat of surface material.
w

Cv Specific heat at constant volume.

CYA Aerodynamic side force coefficient (wina axes).

C Side force coefficient for a =8=0 (wind axes).
0

C Aerodynamic side force coefficient (body axes).

xiii
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C Side force ccefficient for a 8 0 (body axis),
YO numerically equ~al to C

C 2
a

Cy2
a8

C
ao

C-

ya

C Aerodynamic side force slopes (body axes), A

(eq. 289c).

C -

Ak 
C

C Payoile improval teing perurat onrod coefficints

P Fcient vector
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vetr

-4 ~xiv *
...... .......



c 7t 7-f

D Stanatio hifsinceaticing .

D.. Weighting matrix constants.

SDiameter of tank in the st stage; rubber booster.

DP2  Control variable perturbation magnitude.

D2 Perturbod tior magnitude used in first trial of each

DP0  cycle except the first.

SValue of DP2 on last pass of previous cycle. 3

D Minimum control variable perturbation m.gnitude which

D..will eliminate a given constraint error.

2

DPNI DP•_• Value of DP2 on final trajectory on last and last but
one iterations.

D2 2

high High value of DP used by bounce test.

22

DP1 Mii Low value of DPv used by bounce test.

Missile minimum range constants.

D(r,s,t) Rule for forming a new trial by Aitken 62 process

from a sequence of three values r,s,t (eq. 468b).

Vector of desired constraint change.

dp0 , dP 0  Trial value of dD o r dia ; CTLSI.

d-V Velocity gradient at stagnation point.

dXS

2 2

DP Lw vlueof D usd b bouce est
lo
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SE Internal energy of gas.

SE Eccentric anomaly; orbital parameters.

e Eccentricity; orbital parameters.

Stagnation density ratio (eq. 399).

F Total vehicle force vector.

n Component of force in the direction n.

FX XA-axis force component (wind axes).

FZA ZA-axis force component (wind axes).

Fy ZY-axis force component (windalxes)nri xe)

Fxg Zg-axi.s force component (local geocentric axes).

Fx Xe-axis force component (loalt geocenrinc axes).

Fy Ye-axis force component (earth referenced a~xes).
ee

Ze efs

Fs An nxn matrix of tae partial derivatives

!•F(r,s) Rule for forming a new trial by method of false position

I from a set of two values r and s (eq. 46(b).

f(x,y) Function of two variables with continuous first
derivative.

I fS~xS,•S,•S) Function which gives the time derivative o h tt

f(IR•'J Missile characteristics table.

G Heat absorption capacity of surface.

xvi

.4 L.



Ge Heat absorption capacity of nose material.

G Heat absorption capacity of wing s;:in material.s
Gs An n x m matrix of partial derivatives

•as

G(X,a,Ts) Arbitrary function used to define inflight con-

straint limit.

gx Gravitational. acceleration components in earth
e referenced axis system. a

gy
e

gz
e

gx Gravitational acceleration in OLdirection (eq. 34'6).
gX

gz Gravitational acceleration in R direction (eq. 345).

g~xy
~x~y) [Al.gebraic constraint function.

g(x,y,z)j

g(x,a,'rs Arbitrary -function limiteýd by inflight, constraints.

grad 0 Gradient of 0 when constraints are satisfied.

H Third order gravitational potential harmonic
coefficient (eq. 348).

- N-.

H Adiabatic wall enthalpy.
aw

Hb Atmosphere base geopotential altitude.

HDDissociation enthalpy.p

He Enthalpy at nose stagnation point temperature and
pressure.

H Geopotential altitude (eq. 331).
9P

H ! s Enthalpy at wing skin temperature and pressure

HT Stagnation or total enthalpy.

H Enthalpy at wall temperature.

1Scaled enthalpy (eq. 44).

S• H2 Boundary layer edge enthalpy.

H* Reference enthalpy.

xvii
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Y V
h Geocentric altitude.

h Heat transfer coefficient.

h Continuum heat transfer coefficient.c1

h FP Flat plate heat transfer coefficient.
h FR Stagnation heat transfer coefficient by Fay and

Riddell equation (eq. 397).

h Laminar heat transfer coeff-*.cient.

h Orbital altitude of satellite.
s

h t Turbulent heat transfer coefficient.

h Heat transfer coefficient corrected for viscous
v interaction effects.

hs Transformation relating state variables at the end
of the (s-l)th stage to those at the beginning of
the sth stage.

IpFPF Integral of figure of merit sensitivities over
whole trajectory.

Ip SPEngine specific impulse.

I SPR Specific impulse cf reference engine.
M-, R ENG

I Propellant specific impulse

I Integrals of payoff and constraint sensitivity

over whole trajectory.

i Inclination angle of orbital plane (Fig. 28).

i Unit vector aligned along X axis.
e

Elements in matrix of direction cosines (i j k).
Transformation matrix geocentric coordinates to
earth referenced coordinates.

i3

xviii
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J Second gravity harmonic coefficient.

j Unit vector aligned along Y axis.
e

Jl Elements in matrix of direction cosines
(i J k). Transformation matrix geocentric

J2 coordinates to earth referenced coordinates.

JB

K Thermal conductivity.

K Fourth gravity harmonic coefficoient (eq. 348).

K. Constraint error multiplier in determining
figure of merit associated with each trajectory;
CTLS2.

K Reaction thermal conductivity.
r

K0 Payoff function multiplier in determining the

figure of merit; CTLS2.

-- K1 Fuel required to reach initial velocity of first
S~stage for rubber booster.

K1 Atmosphere temperature gradient (eq. 332).

K1 Factor in Runge-Kutta iteration formula.

K2 Factor in Runge-Kutta iteration formula.

K2 Atmosphere pressure exponent (eq. 334).

K• Atmosphere pressure exponent (eq. 338).

K Frozen thermal conductivity.

k Magnitude of control variable perturbation.

k Coefficient for modifying step size (DPý). •+ ...<- +••,'+

k Unit vector aligned along Ze axis.

khih•Working limits on step size parameter k.

klow

A- '-A
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kl• Elements in matrix of direction cosines

(i j k). Transformation matrix geocentric
k2 coordinates to earth referenced coordinates.

k 3

k• Value of step-size parameter based on dimen-
OTVLI sional change of payoff or constraint

functions.

ksa Control varia vector which alters the trans-
formation of state variables across stage points.

k(a,t-t') Acceleration dose damping function.'

L Aerodynamic lift force (wind axes).

Le Lewis number.w

Ls Length of the fuel tank for the st stage in

rubber booster calculations.

Ls(Ts) Solution to the adjoint equations which at
stage time Ts = Ts is the unit matrix.

H1 (Effective flat plate length at temperature
reference point.

• •H Effective boundary layer length.
e

£H1 Geometric distance from shoulder of nose to
1 skin temperature point.

V Distance from starting point at nose to
transition point.

•X2 Geometric distance from discontinuity to
temperature reference point.

Effective starting length at transition point.

M Number of control variables.

M Number of completed cycles.

SLewMach number.

Length no the ue tank for the 5tn in

ruberboote cacuatins p



Si

-k'

MI Free stream Mach number = MN.

M2 Local Mach number based on boundary layer edge properties.

M (subscript) Missile parameters; maneuvering target.

m Exponent in low Reynolds number correction to
stagnation heating (eq. 403).

m Vehicle mass.

mf Propellant mass used (eq. 330).
Iff

m Equation in stagnation point heating (eq. 355).! mq

m Reference mass for computing fuel used, mf (eq. 330).

0 f

Sm Time derivative of vehicle mass.

mf Total propellant mass flow rate.

mf. Propellant mass flow rates of multiple engines.i! "
Engine mass flow rate, including external inert
mass flow.

_ mENG Total internal rocket mass flow, including internal
inert mass flow.

mf Rocket propellant mass flow rate of refei.nce
engine.

Internal inert rocket mass flow.

m Propellant mass remaining for Lhe sth stage;
P rubber booster (eq. 470).

s Mass of propellant for the stii stage of reference

vehicle; rubber booster (eq. 471).

m Structural mass for the sth stage; rubber booster (eq. 471).SmSt

N The number of completed iterations.

N Throttle control setting, single engine.

N1
N Throttle control settings of multiple engines.
2

3 -

xxi

NOW



W-

n Exponent in low Reynolds number correction to

stagnation heating (eq. 405).

n The number of state variables.

nf Normal force along the z axis; body axes system
(Fig. 30).

nq Exponent in stagnation point heating (eq. 355).

0( ) Order of magnitude.
0 Elements in matrix of direction cosines.

02 Combined transformation from wind axes coordinates
02

to earth referenced coordinates.
03

P Argument of an order of magnitude.

P Atmospheric pressure (eq. 334).

Pb Atmosphere base pressure.

PF Figure of merit; CTLS2.

Pressure at which reference thrust was measured.

P* Prandtl number at reference conditions.
r

P Frozen Prandtl number.
rSr 3hs

P5  An n x n matrix of partial derivatives

P0 Reference pressure.

P Free stream pressure = P.

P2 Local pressure.
P2  Legendre function; gravity (eq. 342).

P3 Legendre function; gravity (eq. 342).

P4  Legez2re function; gravity (eq. 342).f P5  Legendre function; gravity (eq. 347).
L r c g y 3

SP7 Legen'2re function; gravity (eq. 347).

P7 Legendre function; gravity (eq. 347).

"p Orbital coast transformation parameter (eq. 522).

"xxii
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p The number of constraints.

SPLocal stagnation pressure.

, Elements in matrix of direction cosines. V

Combined transformation from wind axes
coordinates to earth referenced coordinates.

p3

Argument of an order of magnitude.

Dynamic pressure.

q Convective aerodynamic heating rate.

Rate at which heat is radiated from surface to space.

q Net rate of heat storage in surface material.

%net. iet heating rate = 'q- [ 1:
qI Ideal ; heat transfer rate.

Elements in matrix of direction cosines.

q2 Combined transformation from wind axes coordinates
to earth referenced coordinates.

q3

R Gas constant for air (eq. 420).
R Radius vector from center of the earth to vehicle

teatreeecdcodntstge.(eq. 198).)C

R Geocentric radius.

R Low Reynolds number stagnation heating parameter (eq. 401).

R Missile aerodynamic range; maneuvering target.
a

R Distance between vehicles; maneuvering target.RAT ': ; :

RATIO Factor to change the emphasis on payoff in CTLS2
(eq. 121).

Rc Range to kill zone; maneuvering target.

RD Planet-surface reference range.

Re Planet equatorial radius (eq. 348).

xxiii
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AA**

Re Stagnation point Reynolds number. v

R8  Approximate great circle range of the vehicle from
itE reference coordinates.

ED= Maximum missile range; maneuvering target.

RMN Minimum raissile range; maneuvering target.

RNT Transition Reynolds number based on boundary layer edge
properties (eq. 372b).

RN2 Local Reynolds number based on boundary layer edge I
properties.

R Planet polar radius.
P

Rv Missile constant; maneuvering target.

RL Geocentric planet's radius at vehicle's position.

Re Geocentric planet's radius at reference position of vehicle.

R*L Geodetic planet radius at vehicle's position (Figure 25).

R Displacement of tne point-mass; inertial coordinate " i
calculations. 3hs

Rs An n x r matrix of partial derivatives
ak~

R' Average of planet radius at launch point and at vehicle i
Aposition; great circle range calculations (eq. 265).

R Distance traveled by vehicle over a given portion of Ii
-D trajectory; planet-surface referenced range (eq. 260).

Reynolds number based on geometric flat plate length
R; ~and reference enthalpy properties.

R* Reynolds number based on effective boundary layer lengthI N H and reference enthalpy properties.

e

nil rRecovery factor; heating.

r 0 Nose radius.

- ..xxiv

.......... i
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AM1

rI Elements in matrix of direction cosines
r2 (r,s,t). Trarsformation from wind axes I

coordinates to local geocentric coordinates.
r3

S Factor in diffusion coefficient equation
(eq 448).

S Number of stages.

S Vehicle reference area.

SpF PF Control variable sensitivities.

S€ A typical control variable sensitivity. IV

S Typical control variable sensitivities of order R.r

Sý Typical control variable sensitivities of order S.
S

St• Typical control variable sensitivities of order T.
t

0 Integrated payoff function sensitivities.

S Integrated mixed control variable sensitivites.

sýa Instantaneous payoff function sensitivities.

S Instantaneous mixed control variable sensitivities.

s• Pulse variations; control variables.

Sl Elements in matrix of direction cosines
(r,st). Transformation from wind axes
coordinates to local geocentric coordinates.

S3s3

T Trajectory termination time.

T Atmospheric kinetic temperature (eq. 333).

T Thrust force of propulsive system.

TA True anomaly; orbital parameters

TC Collision time of missile and target;
maneuvering target.

Xxv
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• •T Nose stagnation point temperature.Se

TM Atmosphere molecular scale temperature (eq. 332).

S(TM)b Atmosphere base molecular scale temperature.

TR ~Rocket thrust at reference pressure.

Tr Effective radiation temperature of environment.

T Wing skin temperature.
S

T Trial sequence in iteratemperatr ion equilibrium 3
M Atemperature a=el-6)

TVA Rocket thrust in a vacuum.

T Wall temperature

T

T Total body acxes thrust components

(eq. 326, 327, 328).
T j

T

T y Body axes thrust components of individual engines.

i

Te Nose stagnation point teaperature rate.
e

1 Wing skin temperature rate.S

T Scaled temperature (eq. 449).

TC Target velocity vector.

TEXP Exponent (eq. 122): Phase 1 mode parameter
for CTLS2.

S th
Ts Length of s stage.

T (Subscript) Target parameters; maneuvering target.

t Total action time of a rocket.
a

t mMaximum value of stage time permitted in trajectory
max integration.

tQ Trajectory commencement time.
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Transformation from wind axes coordinates to alocal 
geocentric coordinates.

I-ti Time at which an accelerE.tion dose is received.

ti A point in time separating regions of differing
control variable power.

U Gravity potential (eq. 341).

U Augmented payoff function.

U Control variable weighting matrix.

U Coordinate transformation parameter (eq. 257).

UeT Velocity component of target.|T
u x velocity component with respect to atmosphere

in body axis system.

u Central angle from ascenging node in orbital place;
- _orbital variables (Figure 28).

u State variable of X velocity component in Xe,
e Ye' Ze system (eq. •L2).

e "X-axis component of acceleration (earth-referenced).

1u Elements in matrix of direction cosines (u, v, w).
l1Transformation from body axes coordinates to wind

u axes coordinates (eq. 233).

V Control variable weighting matrix.

V Vehicle velocity vector also interceptor velocity vector;
maneuvering target.

VA Magnitude of velocity including effects of winds (local
geocentric)(eq. 225a)
SDifference between velocity vectors of two -

VAT vehicles; maneuvering target.

CV Closing velocity of two vehicles; maneuvering
VC target.

V Satellite inertial velocity.
-

*s

DV Speed loss due to aerodynamic drag (eq. 272). 
-
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Ve Xe velocity component of target; maneuvering target.

VI Magnitude of inertial velocity.

V Magnitude of the velocity (local geocentric),
g does not include effect of winds (eq. 223).

VI Resultant ground referenced velocity (eq. 275);
g speed loss calculation.

.Vg(t) V at start of speed loss calculations (eq. 275).

V Speed loss due to gravity (eq. 271).gray

Velocity of missile (maneuvering target).

VML aneuvet~ng velocity loss due to thrust vector inclination
(ML ieq.nc7i

V Speed loss due to atmospheric back pressure upon
P the engine nozzle (eq. 273).

V Atmospheric speed of sound (eq. 336).
V
VT Velocity of the target; maneuvering target.

VT
Vtheo Theoretical burnout velocity (eq. 270).

V Velocity vector in inertial coordinates.
Vs Volume of tank in s stage; rubber booster.

V2 Velocity behind shock wave.

v y velocity component in body axis system.

y State variable of Y velocity component in X
e Ye Ze system (eq. e2 1 2 ). e9

Y-component of the acceleration (earth referenced)Ve (eq. 212).

v Elements in matrix of direction cosines (u, v, w).
Transformation from body axes coordinates to wind

v 2 axes coordinates (eq. 233).

Diagonal weighting matrix.

[WiiJ
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WeT Se velocity component of target.

T Reference weight for thrust and fuel flow calculation.

Ws, Ws(.rs) Co.atrol variable weighting matrix. N"~~

w z velocity component in body axis system.El

w State variable of Z velocity component in X ,Y ,ZS.... e system (eq. 212) e e e

w Ze-component of acceleration vector (earth referenced)
(eq. 212).

w Elements in matrix of direction cosines (u,v,w)._=1 =- |•Transformation from body axes coordinates to wind axes

"w coordinates (eq. 233).

X,Y,Z Earth-centered inertial coordinate system.

-Y , Z' Components of inertial velocities.

X., Y Z Wind-axis coordinate system (Fig. 23).

X Xe-component,difference of target and inteceptor position
AT ](earth-referenced); maneuvering target.

XAT Xe-component, velocity difference of target and inteceptor
(earth-referenced); maneuvering target.

Great circle down range distance.

n nEarth-centered rectangular coordinate system ro ting
with the earth (Fig. 20).

eT

~eT
YT Xe Ye' Ze coordinates of target position; maneuvering

target.
l I
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e
Y Velocity components in X Y Z system (Fig. 20).

e e

e

Y e Acceleration components in X e Y e' Ze system.

e

x
g

Y Local-geocentric-horizon coordinate system.
g

Z
g

S~Velocity components in local geocentric coordi-
g' nates (eq. 222).

g
Xj Inflight constrairt violation state variable.

Xj Rate of inflight constraint violation.

x(Ts A state variable vector for the s stage.

s s thth
X .(Ts The 1t state variable vrector for the s stage.

Xs Value of a state variable at the beginning of st

stage.

X sf Value of a state variable at the termination of s th

stage.

x~y5z Body axis coordinate system (Fig. 16, 17).

-- •x Factor in low Reynolds number correction to stagna-

tion heating (eq. 404).

x Factor in low Reynolds number correction to swept
wing heating (eq. 384).

Y Aerodynamic side force (wind axes).

YA Yer-component, difference in position of target and
AT interceptor (earth referenced); maneuvering target.

xxx
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Y Y-~component,veoiydifferenceinpsto of t rget and ~-
ATinterceptor (earth-refereniced); maneuveringtag .

Ze-component,vlct differenceinpsto of ta .rget and K~ii
'AT j

interceptor (earth-referenced); maneuvering target.

z(X,y) An- algebraic function which is to be maximized.

xxxi



a Angle of attack (eq. 213)--angle between velocity vetor and

the vehicle reference viewed in side elevation

as Angle from stagnation point to shoulder of hemispherical nose.

U. Surface slope relative to free stream temperature reference
point.

al,a2 A powee.ful and a weak control variable.

.th th
aiJ(t) t control variable in j descent at time t.

rjtsjt th th t

arj(t)asj (t) r and s control variable in jth descent at time t.
th

c&(rs) Control variable vector for s stage.
.th

i S(TS) The i control variable.

Sideslip angle (eq. 21h)-angle 1, .ween velocity vector and
reference axis when looking down on vehicle planform.

Auxiliary transformation angle; body axes to wind axes (Fig. 24).

y Geocentric elevation flight path angle (eq. 22hb)

y Ratio of specific heats (eq. h26).

YA Flight path ealgle relative to atmosphere (eq. 225b).

Geodetic flight path angle (eq. 259a).

YI Inertial flight path angle (eq. 277).

YI Inteceptor's elevation flight path angle; maneuvering target.

YLA Lead-angle flight path angle; maneuvering target.

yLOS Line-of-sight flight path angle; maneuvering target.

y Change in the pa,,joff function with respect to W

yIP Change in the constraint vector with respect to w

ACpi Incremental change to be made on each cycle to value of Cpi.I

tE Change in eccentric anomaly during orbital coast; orbital parameters.

at Time change during orbital coast.
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th
Aai Difference betweeni nominal and optimal values of the i

• control variable at any point

AYL Inclination error from lead angle path; maneuvering target :•

AYLoS Inclination error, from line of sight angle; maneuvering
target

ALA Heading error :'rim lead angle p;ath; maneuvering target.......

AuLO Flight path angle error from line of sight; maneuvering target

-- •__.()•cTi(C)I Integral measure of perturbation, in the. t~ rth or st con-

APX(C) trol variable between the nominal and C iteration in aElAPs(C) descent.

AP() Integral measure of changnce in thi vau es contr the iab

controlnvariableiatlany point

APs(n) history as the number of iteration increaseu without limitt
Hai err ld nlaeeith targ

AP* Original meal perturbation required in r control variable.th th

AP*s Original total perturbation required in s control variable

Aos Mean control variable change as the number of iterations •"increases without limit. j

Atls Mean control variab.e change between nominal and optimal

trajectories

Ae*Nose skin thickness

e

6s Wing skin thickness

6TA Tracking angle; maneuv,-!ring target

6w Thickness of surface material

OL Optimum control variable perturbation

2
6al Control variable perturbation corresponding to DP1I

6 Control variable perturbation which leaves the constraints
unaltered.

6aiJ t th th t

arj Change in the it, r ,or s control variable on the j
6aJ descent

6a(t) The maximum control variable perturbation magnitude at any_max point along the trajectory

xxxiii
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I'
6�(t) The minimum control variable perturbation magnitude at any

mm point along the trajectory

-� Emissivity of surface � I
Emissivity of nose material

Angle between geocentric and gecA�.tic verticals from vehicle
(Fig. 25)

Total steering error, is neuvering target

Line of sight steering error; maneuvering target
Eq temperature I.eq.464..h65) eq'�ilibrium

Tolerance oncj�� in iteration for radiation

Emissivity of wing skin material

ESE Allowable steering error, maneuvering target

5Tl Propellant mass flow rate factor for rockets.

5T2 Specific impulse factor for rockets

Action time scale factor for rockets
T3i

Th� Propellant loading factor for rockets

ETS Thrust factor for controllable rockets

�' £T6 Thrust factor for air-breathiLg engines

Head�tig angle to present position of vehicle; down range and
cross range calculations (Fig. 27)

Lagrangian multiplier

Streamline divergence parameter

O Orbital coast parameter; longitude

0ASP Aspect angle (Fig. 33).

01 Inertial longitude (eq. 280)

Longitude of vehicle (Fig. 20)

e Reference lcngitude (Fig. 15).
A Wing leading edge sweepback angle

V.
4
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I •I

AT Engine cone angle, single engine (Fig. 19) *;

Engine cone angle of multiple engines ,

s s th ;S (Ts) The adjoint variable vector for the s stage .

s sX (T Payoff function adjoint variable, sensitivity of • at
unperturbed cut-off time to state variable changes at RV

S s)
•(T Constraint function adjoint variable, sensitivity of con-

tStrant at unperturbed cut-off time to state variable changes
at T S S

Aý2(tS) Cut-off function adjoint variable, sensitivity of at unper-
turbed cut-off time to state variable changes at T

XS (S) Payoff function sensitivity to state variable changes at T.

Sl (S Coff function sensitivity to state variable changes

Xv2 (Tr Cons raint fnto estvt osaevral hne
at T .

Gas viscosity (eq. 437).

1g Universal gravitational constant (eq. 348)

Viscosity at stagnation conditions

Pw Viscosity at wall

)12 Viscosity at boundary layer edge

Viscosity at reference conditions

V Atmospheric kinematic viscosity (eq. 337)

SLagrangean multiplier for constraints

V Longitude difference between the vehicle and the ascending

node; orbital variables

An arbitrary function of the same form as the payoff, cutoff,
or constraint functions

A vector; differentiation

Heading angle between reference great circle and present posi-
tion of vehicle; down range and cross range calculations
(Fig. 27)

P pAtmosphere density (eq. 335)

xxxv
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P• Density at reference condition

Pb Atmosphere base density

Pe Density of nose material

Ps Density of wing skin materit.

Pw Density of surface material

Pw Density at wall

P2 Density at boundary layer edge

PT Density at stagnation conditions

PpS Combined bulk density of xuel and oxidizer, rubber booster

a Geocentric heading angle; Xe, Yes Ze system (eq. 224a).

OA Heading angle relative to atmosphere (eq. 225c).

aD Heading angle with respect to local geodetic axis system (eq. 259b)

0I Inertial heading angle (eq. 276)

0I Inteceptor heading angle; maneuvering target

0LA Heading angle for lead angle course; maneuvering target

NLOS Heading angle for line of sight vector; maneuvering target

C0 Initial geocentric heading angle

T Scaled action time of' rockets

Ttr Constant in transition heating function

T(a) The length of time a vehicle or crew can withstand an acceler-
ation a

Ts Stage time

0 The payoff function

SADV Maximum permissible adverse change in payoff function

Og Geodetic latitude of a vehicle (eq. 258).

Geocentric latitude of the sub-vehicle surface point in the
•g gravity direction (Fig. 25)

xxxvi
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SOL Geocentric latitude of the vehicle

OLo Geocentric latitude of the vehicle at t =0 (Fig. 15)

A Lead angle; maneuvering target (Fig. 33)

" •max The greatest absolute value of the payoff function over the
i preceding iterations

SNL Payoff function non-linearity

S• Desired payoff function non-linearity
•s NL0

O Satellite position in orbit

O•so Initial satellite central angle

O•T Thrust axis inclination about the reference axis (Fig. 19) Zk

•T2} Thrust axis inclination of multiple engines

$'Angle between radius vector (R) from center of earth to point 8
mass vehicle and the North pole, colaltitude (eq. 199)

$'Derivative of with respect to V= N

SConstraint function vector A-N

•BWD Permissible unfavorable non-dimensional change in constraints

SERR Control system constants

•FWD Permissible favorable non-dimensional change in constraints

•NL Non-linearity of constraints

•NL0 Desired non-linearity of constraints

S•*The p*t constraint 
'

ii:•"•TOLDesired accuracy of constraints D

•'Derivative of with respect to FpM*

STLConstraint travelg

SLongitude of ascending node (Fig. 28) M

tht

'vSV
Pay-off fucion. non-ineariuntyo o tg

xxxviiS
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The trajectory final cut-off function

Wp Magnitude of earth's angular velocity (Fig. 15)

Earth's angular velocity vector (Fig. 15)
OP
Ws Angular velocity of satellite

Ws The control variable which determines the length of the s

stage

NOTATIONAL CONVENTIONS

d(

d-r
5

. .)X .. )X.' .. )X2 . ..... )Xm

xi a x-

( )' Transpose of a matrix
A vector without a prime is a column vector
A vector primed is a row vector

( )-l Inverse of a matrix

A( ) The actual perturbation of a variable

4( ) A prescribed perturbation of a control variable

d( ) The linear prediction of the perturbation of a variable

)s th
( )s Value for the s stage

( )si Value at the beginning of the sth stage (-s = 0)
sf th s s
)f Value at the end of the s stage ( = )

xxxviii
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5ECTION I

INTRODUCTION

Suppose one is given the task of optimizing the flight of some vehicle
on some mission. A reasonable starting point is to first be certain that
the mission itself is well-defined. The constraints that one must live
with must be throughly understood. A constraint is anything affecting the
solution that is specified as fixed by the problem statement. Thus, certain

characteristics of the vehicle are fixed s therefore are constraints, cer-
tain other characteristics may not be fixed but may be varied to improve the
solution. Certain constraints must be met at the " _ning of the trajec-
tory, such as initial position, initial velocity, initial mass, etc; others
occur at the end of the trajectory and possibly some at intermediate points,
as well as differential constraints along the trajectory (such as the equa-
tions of motion).

Any quantity which influences the performance of a mission but the
value of which is not specified in 6he problem statement is referred to as
a control variable. Control variables are of two types; i.e. those that are
functions of time, such as angle of attack, and those that are constant for
a given trajectory, such as initial mass. The fact that an optimization is
being attempted implies that there is more than one set of values for the

_ * control variables which will satisfy the constraints (that is, accomplish
the mission). The task then is to find that set of values of the control
vvariables which accomplishes the mission best.

Given any two sets of values of the control variables, both of which
satisfy the constraints, it must be possible to tell which set is "best".

This criterion must be given in the original problem statement. The defini-
tion of the payoff function is a very important part of an optimization
problem regardless of the method used. This must be a single well-defined
quantity associated with each trajectory.

Consider the following example of an optimization problem. Suppose a
missile is to be fired from an airplane to a fixed target. The plane's
position and the magnitude of its velocity are fixed but the angle from the
horizontal, y, at which it releases the missile may be selected within cer-
tain limits. The payload and total burn time of the missile are fixed, but
the rocket may be restarted once so that the burn may be distributed over
two stages. The ang'e of attack, a, (which determines thrust direction as
well as lift and drag coefficients), and the distribution of the burns over
the trajectory become control variables. it is desired to maximize the
velocity at the end of the trajectory.

The above problem is typical of the type of problem this program was
designed to solve. Steepest descent is an iterative procedure in which the
nominal (beginning'i values of the control variables must be supplied by the
analyst. There is much freedom in selecting these nominal values but in
some problems, if care is not taken, the program may take an unreasonably
long time to converge, if, indeed, convergence is achieved at all. The
selection of nominal values will be discussed later.

1
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Through a sequence of perturbations to the control variables the pro-
gram attempts to find their optimum values. Thus, a trajectory is integrated

and examined to see how it can be improved. After a certain amount of experi-
mentation with control variable perturbations a new set of nominal values are
selected, and the procedure is repeated.

The control variable perturbations are based on the sensitivities of
the payoff and the constraints with respect to the control variables. These
sensitivities are analogous to the gradient of a function of n variables.
That is, if the control variables are perturbed by a given amount, the sensi-
tivities may be used to obtain a first order prediction of the resulting
change in the value of the payoff and constraints.

The flow of the program is shown in Figure 1. The optimization proce-
dure Is as follows:

1) After all necessary data initialization, the differential equations
defining the movement of the vehicle are integrated. The nominal
values of the control variables are used in this forward integra-
tion and the resulting trajectory is referred to as the nominal
trajectory. In order to compute the sensitivities it is necessary
that certain partial derivatives be evaluated along the nominal
trajectory as the integration proceeds.

2) After the integration of the trajectory terminates, the sensitivi-
ties of the control variables are computed. It is necessary to
first solve the adjoint equations, a set of differential equations
associated with the forward differential equations. These are
solved in the reverse. The reverse integration proceeds from the
terminal end of the trajectory to the beginning. The reason for
this reverse direction is that the value of the solutions of the
adjoint equations are known at the terminal end of the trajectory.
The sensitivities are computed from these solutions as the integra-
tion proceeds.

3) After the reverse, the control system computes the perturbations of
the control variables. The first order effects are used in the
determination of perturbation mode of the control variables but are
of no use for determining the amplitude. The first time through
the control system a nominal trial step size is used unless one is
input in the data.

4) A trial trajectory, referred to as a pass, is now integrated. Par-
tials are not taken on trials.

5) Program control is returned to the control system. Based on the
results of the trial trajectory, a new step size is selected. The
original mode shape was computed to insure, in some sense, an
improvement in the trajectory for sufficiently small step sizes.
If this step size is too large, higher order effects will overwhelm
first order effects and instead of improving, the trajectory will

2
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deteriorate. Too small a step will result in too much computer
time spent taking partials and doing reverse integration. Steps 4
and 5 are repeated until the control system decides on a step size.

6) The forward integration is repeated one more time. This time the
necessary partials are computed. The control system takes one final
look at the results and if it finds the results acceptable the pro-
cess is repeated from step 2. The new nominal value of the control
variables are the original nominal values plus the perturbations.

The theory upon which steepest descent is based is that if one goes
through a sequence of the above cycles, each time improving the trajectory,
then one will finally end up with a trajectory which is as close as necessary
to the optimum. The procedure outlined above has proven to be successful for
a wide variety of problems. As is true of most iterative procedures, espe-
cially when applied to optimization problems, it will sometimes fail. It is
hoped that the development and discussion which follows will aid in the under-
standing of the procedure and in the use of the program.

- K'
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SECTION II

MATHEMATICAL FORMULATION

1. Problem Statement

The problem of interest here is a generalization of the Mayer problem
of classical calculus of variations. The problem is to be solved by the
method of steepest descent. There will be a number of variations of the '

basic problem and it is intended that the formulation be general enough to
include all of these. -

The trajectory will be broken down into a sequence of stages, s =1,
2, . .. ,S. The initial conditions of each stage will depend on the terminal-
condit ions of the stage immediately before it. The payoff function and the
constraints will depend on the initial conditions of the first stage and ~4
the terminal conditions of all stages.,

Consider an admissible class of control variaibles

a = a (TS), as (TS),..-, as (T s(0 2, T <.

and an associated class of state variables

(2)

satisfyn th (TS U), XS (TS),...,XS T

satsfyng hedifferential equations

=STS fS(XS,ct5,TS) [fS =f~S . f)

_d(Xs(U
5))

is (TS) - t ;and s = ,2. ,]

and the conditions

x5(o = ~(X 1 (~~ 1 ),k) [s =2,3, 5 5
=(

5 k k) 41' 2' '~

'Mv.
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where the ks are additional control variables and rs ýS n. The problem

posed is to select that member of the class of control variables (aS,kS,Ts)

which maximize the payoff function

T =.' ,TSxl(0)X ,x(T1) X2(T ),...' ,x(TS;) (6)

subjecL to the conditions

-AV

¢P"~ ~ ~.. X P(ITl'T'(0), Xl(TI),'x(T2)""xS(TS)) 0(7

[p* 1,2...p _n + 1) (S + 1)-]

The control variables belong to the class of sectionally continuous func-

tions and the state variables have sectionally continuous first d,- ivatives.

In what follows it is assumed that all other functions and their derivaties

possess the necessary continuity properties. The constraints must be a con-

sistent set, i.e., the matrix of partials with respect to stage time and
state variables, ['T' 2X"' ¢X], must have rank p. Here

2. First Variations

To solve the above problem by the method of steepest descent an arbi-
trary set of values for the control variables is selected. These define a

ff"ýnominal trajectory which need not satisfy the constraints. From this the
first variation of various functions with respect to the control variables

is computed. This first variation is used as a guide in an attempt to gener-
ate a new trajectory which is an improvement in some sense over the nominal.

The nominal is now replaced by the new trajectory and the cycle is repeated.

The fact the cne constraints are not satisfied on the nominal trajec-
tory is the source of some inconvenience. In many instances there will be

no way of determining the most desirable or even a good value for the length
of the various stages, that is, Ts, s = 1,2,...,S. If one of the constraints
is a function of XS(Ts) and Ts only and it is known that this constraint will

be satisfied for some value of Ts on the nominal and succeeding trajectories;
possess tthen we can terminate the sth stage when it is satisfied.

sis The class ife.rothema of interest here include those for which the
above procedure will not work in every stage. That is, there will be stages
for which there will be no constraint that is useful in determining the

. length of the stage. For these, peudo-constraints of the form

S~6

of hevaios sagstht.i.. . s 1,2... ,S. Ifoe-fth ontait

>1 is.]"> .a func•tion o X5 5  an 5 only an ti+n<nta hscosritwl

aboe rocdue wllno wo, inb~ evr tg. Thtithr il esae



s(TS,xS(TS))- ws 0,

are introduced. The quantity ws is a control variable and must be given
anom-inal value. The theory is that 0s is to be perturbed to an optimum

value. For programming reasons this technique was not programmed. A
S~technique which accomplished the same thing but was more convenient to

program was used. The procedure used will be discussed later in this
_ _3section. The above technique is carried through in order to keep the formu-

S• lation general.

Sm•, The following notation will be used:

S•-'••, • The value of on the nominal trajectory.

•.• .6a A prescribed perturbation of a cor i', i variable,a

dE The linear prediction of the perturbation of E,

AE The actual perturbation of 0,

xf xS(Ts) (O

ExSf (E (xf, sxf,..., ExSf>'
x x n (12)

S• sf ,•sf
•=Ts + (EXsf) x(13a)

T: m

S" ~d()
J -- -•( -( 1 3 b )I Q

Kd T

"*] S(T)xi= (13( )

isare arintroduc. T quanti ty wh presents variabor e a1 n mteraivn

involving vectors and matrices a prime denotes bhe transpose and a vector
will bw used the a column vector when it is not primed.



-~ ~'4~ 4~ 4' ~ ~ -4Z-" '4"T

Suppos a noia rjcoyhs*De g'e n etraino h

Shpruppoedanmia trajectory hilalso satisf these aerutirbation ofate

X8(t5) = f5 (X5,t, 5 s 0 B,,.,) (15)

The prtre d trs nxaetoryx will alsomsntisfthseqainsoht
44'3

%4i

If eq. *(1 5 ) is subtacte frme.(6+n h hge re em r

=X F5 (,, 5 +X +SX +s G5sige rertrs (16)

"'T~~ ~ ~ ~ 1,,A ,s)'s ,,.,S.(0

'4 we~e isan nn mtrixwit eleent
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Consider

As)'dXsJ (;) dXs + (As)' ax

= [(s)'s]'dXs + (AF)' (FsdXs Gs6as)

- (As)' Fs dX8 + (As) Fsd + (Xs)?Gs6,s

=(As)' Gs6as. (21)

If both sides of the above equation are integrated from 0 to Ts there
results

(A~)x~~Ai)d~ Y G6cz5 dTS. (22)

it is convenient to define Jo

+ fs~f, (2F)

The total change in F, includes d& which is due to perturbations at the
ends of all stages plus the effect of perturbations dXli at. the Deginning

*of the trajectory, 'L

dc dC+ C lidX

The relationships 
s

dsi P dX~s-~ + R 6k~ (s 2,3,...,S) (2c) ~ ~ * K

dXi R 6k, (26a)

and

dX5  = dXs(T5 ) + Xs dT,(6)

hold, where P5 is an nxn matrix with elements

= 3h (27a)
ij

I
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ij(2b

First de3 is computed in terms of dSi ~S (TS and 6S*

Let V
X (28)

-~ From eqs. (13), (22), (23), (26b) and (28) it follows that

S Sf S
d& EX dX + 4TS dT

ýXfdS(TS) + ýS dTS

- f d (T (S5) + C ' d'IS

(X~i dXS I f (XS)' G5 S~a dTS + Ff d'IS.
(A')+ 0  (29)

The differential of the cutoff function dR will satisfy eq. (29) so that3
if dSI is equated to 0 it follows that

S
S X.S fT S S I f S S(0

Mn (~S) dX5  (x) G 6a~ dT5 + dT5  6W30

or

'SS~ 4
-T

V.,, 
10

F,/
"z7 -
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Thus if eqs. (25) uind (31) are substituted into eq. (29) becomes

SS

Sf

TS -ST

OSf (xi) G56d

(xl)' +fT.{:;ctd+-S

S S 
-

+f T Of (33)S

6c ~ ~ ~ ( (T 6a 6k,6S 6

Le 5  t)bea nnmtrxsaifin quto
= -[~]L

5, of'

Of
+11y

Of~

S -:, Z
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and the condition

Lf= L 5(T 5) 1 (35)

where I is the identity matrix. Thus it follows from eq. (22) that

L5dX ~(T) = Xsf(Ts)

Define )ý(To) to be a (souion o eSq+J (20) S~ saifigthe condition (6

x(T)= Qss.s = 1,2,... ,S (37)

'thus (omitting the algebraic manipulation)

dE = ETS-1 dTSJ. + Ex'(S-l)f dX(S-1)r + C

3-

~ S
+ I ~ S S S Si) RS S

+x ~G 6a d-c1 + ( ,

IS-l Si, .s -(

(38)

------ (S-i)±'euto s h
Where Xgl is a solution of the adijoint eqainsatisyingth

S.' condition

is (S1 Lf X(S-l)f )i
x + (A ) s

1 (39)
I(S-l)r'+ ASi) 's ý(s-i) s

- Li1
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Define A(T) as a solution of the adjoint equations which satisfy the

condition

- s + 0Sl)i) PS+l vS1'2 'n
[~Sf + ( (5+ -, a sf (s=l,2,..., S-i) (I)

tsf Xs
-ssf- Sf (s=S).

It can be seen, by following the above steps for each stage, that

S ss s

S=Jf dT + L (x)
0 l

+ S-1 [/Sf + (xS+l)i) sl sf\ 5 S

fT'Z (41)

'Where E ~ L & +y~WG6z

(-Y + (X )~ 1p+ ~)l (s1l, 2,... ,S-1) (4t2a)

- (s=S). (42~b)

3. Determination of Control Variable Perturbations

Given a nominal trajectory and its first variation it is necessary to
calculate control variable perturbations which will give an improved tra-

jectory. In order to select the optimum distribution of peiturbations

approximation of AE only so long as the perturbations are sufficiently
small, it is important to select a distribution such that no one control
variable is perturbed an unreasonable amount. In order to restrict the per-
turbations a metric or measure of the step-size is defined. It is obvious
that the perturbation selected will depe" i on the metric used. The quantity

S
DP =6~) W~sT + ( )'V6w + (6) ,~ (43) ~ ~ ;~~'

where

k=(k 1 ~2 ,~* ,(J44)i
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will~~~~~~~~~-q"k beue stemaue fse-ieDnti epeso 5  n
are positivedefinite d-iaol marie whic shudbslceZtmrv

convegne This5% seeto4 ilb dsusdltr

strit wil bsed at the mped.r fse-ie ntisepeso s n
1' ostv definit diagna (115) hc sol b eece omrv

bedtce someoun ofl constraint corretorand/desimrov h d.fucto.I

Ths thelo pertsrbltiorvn shudbeseralece to rmavimize the fonctrionterri

1 2

+.6w V6c1w + 6k U6k - D2]

"s=JX s (R R ks + + s i 6Ws

'~F(Xs + "v(,r)' G 6a dT -vtda

2]~kD (4*6)

subject to the cnnditji~nn that

dq, (4*7)

and

ST( 6 S') W'ad +c 6w'V6w + 6k'U6k DP

E.J (48)

where X IsQ *IQX IN22 p is an nxp matrix (4*9)
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while v V, ( 1 v2 ,... vP) and Pi are Lagrange multipliers. Y

Necessary conditions for 6ct to maximize U are

S s?

-&S 0-- , .
(50a)

=0 (s =1, 29,... 9S) 25b

a =0 (s = -, 2,... ,S; i=1,2,... ,S). (50c)a 1CI
From (50a) it follows that

2n WSp+ 1(A) +v =,s G 0 (51)

or

6a 5 -(W,)- (Gs) (Ar + A v(52)

From (50b) it follows that

Is .. ~.I S :
+ Vj + 2n1 V5  6W =0(3

or

-W (ys + (ys v (s 2..S.(4
2n1

From (50c) it follows that

1(As) ,(sRs +-nU k (55)W

or

1 -l
6k UA VI(56)

Define the follo-wng:

(AS,,) G (ws F (Gs) s dT

s -1 s l S4 s
+ (y)v y + Ox~ R5 U (Rs),x Sy ss YO OS ss

15 ztv
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mu" -x

......... 6..R
± 15

(xsa )' (58) (S 1Ls d

sr s s-lr

S T -

[]~ I (Y Gs v(~) ~w)(WS) (Gr' )~ rAT
+sA v]1 d s [ + v(Y)1 V V8 91 [i

~(xs ) + v(s) R U

CI +2 I(s) + vI(S -vi V

s V1 + [(Xsiit I i I J1s

-DP
2  (6o)[Likewise, the same substitution in eq. (4'7) yields

1X + is' sS
Gs(WG r (Gs) (Xs A v )dT

-1: s s; v) S A;: RSR) (xs
+ S) v~ (Y +V)XQRU(

dO.-
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Jý'.r

or

V J -1(2d (62)

Finally eq. (62) may be substituted into eq. (60) to get

ro + 21'l 144])'a I

+ (1[2ndO [ nda I4]

-1 2 1 ~8I I + nda

4n4

n.. 2 (64)G)(x X3 v

.15 S -1S1(S+X

+ (W5 )-(Gs)'X I- d8, (65) _

likewiLse -

-1 s 1 - 4 4

*V s I-' dO (66)
ass ~

R; -
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AA

and 2 '1

Uý =~1(S' i - si -1 1 D- I d
Sk IR)'X I I

+ u (Rs)' Xs I, do (67)

4The predicted change in *can be obtained if the above values for

S s
6a~ Ow and 6k are substituted into eq. 141 of the last section. Thus

T 

-4

+(y5 ) (Y-f io

si 1 _________1

1 (s S -l
+ I Iv I

+fTSsis

DP ( 2 dI' I1 ) dP 2 d Id
.......... '4) ~ I l

+1 s sd 1 s si s -

-sW) (Gs)4) x dT ID ddo1 d

+ I I do.1 (68) -
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4. Program Version of Formulation

The program based on the preceding formulation has evolved over a long
period of time. As the various options were added to the program it became
clear that, for programming reasons, the direct approach was not always the
best. The ks of eq. (4) and the ws of eq. (9) are considered to be control
variables in the formulation, but neither of these is available as a control
variable in the program. Anything that could be accomplished with them as
control variables can be accomplished through the use of additional statevariables as explained below. The program uses the apprcach of additional
state variables because of its simplicity and greater flexibility. The Dpram-
eters, ks and ws were retained as control variables in the preceding fomu-
lation so that they might be added as options to the program if future use
would indicate some reason for doing so.

The program has only two types of control variables; those that are
functions of time, such as angle of attack, bank angle, etc., and those that
are initial values of state variables, such as initial mass, initial velocity,
etc.

V
Four new variables called slack variables: FLUXA, FLUXB, FLUXC, and

FLUXD and their derivatives, FLUXAl, etc., are available in the program for
a variety of uses. These are dummy variables in the sense that they have
no particular effect on the other calculations but are available in order
to give the program increased flexibility.

Optimal staging may be accomplished through the use of a slack variable.
This is done in the following manner. One of the slack variables, say FLUXA,
is defined to be a state variable and its derivative, FLrXAl, is defined to
be a control variable. The nominal value of FLUXAl in the stage to be opti-
mized is set to 1 and FLUXA is set to zero at the beginning of this stage.
FLUXA is used as the cutoff function, its value at stage termination is the
nominal length of the stage. The program perturbs the length of the stage
by perturbing the control variable FLUXAl.

A component of the vector ks of the h-transformation

Xs (0) = hs(Xs-(TS-l), kS), (69)
may also be simulated by a slack variable, again say FLUXA. This may be
done in two different ways. In either case the variable FLUXA is programmed
into the desired h-transformation, and FLTJXA is defined to be a state vari-
able. The desired optimization may now be accomplished by setting FLUXA1 tozero and optimizing the initial value of FLUXA. On the other hand, if FLUXAl
is defined to be a control variable then it is not necessgry to perform an Y
initial condition search on FLUXA. The latter method obviously will notwork for an initial condition transformation, but this method does make it
possible to use the same slack variable in h-transformations for more thanone stage. For examples of how the h-transformation may be used see Sections
V-9 and V-11.
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i. InEroIuction

The sensitivities of the payoff and each of the constraints with respect

to changes in the control variables are easily determined from the solutions

of the adjoint equations. However, there are three items which must be con-
sidered before this information can be used to "improve" the trajectory:

(1) Improvement of the trajectory vili consist of reducing the constraint

errors and/or improving payoff. Before a perturbation mode can be

• ~computed a scheme must be devised for determining how the perturba-
-- • tion will depend on the correction needed in the constraint and the

improvement desired in the payoff.

(2) The metri^ used to measure the step size will influence the pertur-

bation mode. The form of the metric used by this program is given
by eq. (43). The U and W matrices must be input or computed in

some manner. Note that the V matrix is not us•ed by the program.

(3) The step size (ýDp-D ) to be used must be determined for each cycle.

SThe success of the steepest descent process depends largely on how the

•:•above three points are treated. The control system contains the logic for

making the necessary decisions.

S~The manner in which the constraints are treated can have a marked effect

on the convergence. If too much importance is attached to reducing the con-

straint errors and then keeping them small, the payoff function will improve
very slowly. It may improve so slowly that the analyst may conclude that the

optimum has been achieved. Even if the analyst is not misled into accepting

a nonoptimal value of the payoff as the optimum, the number of cycles
required to achieve the optimum could well be excessive. If the constraint

. errors are allowed to remain too large the program will work to gain a small
i i amount of performance only to lose it again when the constraint errors are

__ removed. It is certainly necessary for the program to bring tLhe constraints

A in and hold them at some point since no solution is acceptable unless the
constraints are satisfied to within some specified tolerance.

The program will normally converge to the optimum in a reasonable number

of cycles for a wide range of values of the elements of the U and W matrices.
If the value of these elements is far from their best values, the number of

cycles required for convergence may be considerably greatter than necessary.

A very poor selection of the weighting matrices may even result in the pro-

gram converging to a nonoptimal trajectory.

i• Once a mode shape of the control variable perturbation has been deter-

. mined, it is possible to expand the perturbed values of the payoff and each
• of the constraints in a Taylor series. That is,

:• 20
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F + D" 2 + (7o)

A = i DP2 + DP2 + Ca)i =.;•21

The prime denotes the derivative with respect to the square root of DP2 .
The predicted change of each function is obtained by dropping all except
the first term. Thus, for small values of DP2 the predicted changes would be

S• a close approximation to the actual changes. If the step size were kept
sufficiently small, the convergence would be well-behaved but the number of

cycles required would be excessive. If the step size were too large, con-
vergence would be erratic, if indeed it would be achieved at all.

A number of difficulties arise when one attempts to design a logical
system to implement the above considerations. One difficulty is the wide
variety of problems that the program is designed to solve. Each type of
problem has a variety of control variables, constraints, and payoff func-
tions. A control system which works well on one type of problem with a
certain set of constraints, payoff, and control variables may be entirely
inadequate on a different problem.

The formulation of two control systems is given in the following sec-
tions. The control system, CTLS1, has been in existence for some time and
has successfully solved a number of problems. The control system, CTLS2,
was formulated with a view toward utilizing the experience gained in the use
of the program to improve both the speed and reliability of convergence to
the optimum.

The discussion of CTLS1 is essentially the same as given in Reference 1;
minor dcletions and additions have been made to make it compatible with the
present program and formulation.

The philosophies of the two control systems are quite different. The
discussions overlap and are in disagreement on certain points. The reader Z
should remember that the theory of steepest descent is of no help in making
the decisions that must be made by the control system. These decisions must,
therefore, be subjective.

l*

21

ggý_

'

ii-



l a. Control System Philosophy

i There are two philoso'.-hies which may be followed in most complex
decision-making situations. A person may attempt to reach a conclusion

directly by asking what is the correct course to follow, or indirectly by
asking which courses are nrt to be follo*,.ed. CTLSI follows the latter
course. The direct approi•ch may at first sight appear the more attyactive

S~method; however, it should be borne in mind that it is usually far easier
to see what courses of aotion should not be followed than it is to see what

~particular course of action should be followed.

j The major problems involved in the design of a control system for

-the Steepest-Descent Method axe failure to converge and false convergence.
S~The first type of failure is immediately apparent but the latter may be

I • exceedingly difficult to detect. For example, suppose that we have a case

involving a single constraint which, after the first M cycles, has effec-
S~tively met the desired terminal value. If we directly specify a rule for the
S~constraint change and do not permit the constraint value to drift away from

the desired value, we will, by virtue of the nonlinearity of the solution, be
• limited to very small step-sizes Pmd very small payoff function changes in

consequence. In a severe case, this will result in behavior which may easily
i be mistaken for convergence. On the other hand, by permitting the con-

S~straints to drift off the desired value by means of an indirect test, this
phenomenon may be avoided; this type of behavior is illustrated by Figure 2.
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True convergence obtained by
* ~~~~permitting adverse constraint travel --....

e0000 Apparent convergence due to
cc restriction on constraint travel

Cycles

( 4

C.
t4

Cycles

* [ Figure 2 - An Example of False Convergence

In view of the above and similar types of phenomenon, CTLS1 has beenconstructed as a group of very loose tests, in the sense that a set of almostobvious decisions as to step-size magnitude lead indirectly to a choice ofstep rather than by constructing more definite and hence restrictive tests
leading directly to a step size.

b. Basic Control System Principles

Each cycle commences with a trial trajectory which uses a step-size
magnitude, k, where k = 0 denotes the previous final trajectory and k 1denotes the particular step-size magnitude that was used to obtain the trial
trajectory.

On completing the trial trajectory, the nonlinearities of the payofffunction and constraints are computed. These are nondimensional measures
of the difference between the actual and linear predictions of the change in
these functions. The payoff function nonlinearity is defined as,

~NL = do (72)
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and the constraint nonlinearities are defined as

*N d*i (73)

where de and d* denote the linear predicted change in * and *, and A0 and
A* denote the actual change between the previous final trajectory and the
present trial trajectory. We know from the discussion of Subsection 1 that
for a reasonable step in any of these variables, the corresponding nonlin-
earity must be neither too small nor too great.

Assume that a single parameter can be chosen to define the step-size
and that the predicted changes in the optimization functions will vary
linearly with it. We can choose one such parameter in the following manner:
let nominal values be available for DP2 and d# and let these values be
denoted by DPo and d*o. Now take a parameter k to determine step-size in
the following manner,

DP = ki DP 2 (74)
0

d = k d*o (75)

If Sao is the control variable history generated by the nominal choice of
step-size parameter k = 1, then we have from eqs. (65) and (68),

6ak = k 6ac (76)

and

*0k = k de° (77)

We see from eqs. (75) to (77) that the perturbations are linear with the
parameter k, as was desired.

On completing the trial trajectory, an approximation to the actual
nonlinear variation of the optimization functions with step-s'.ze parameter
k can be obtained by making the assumption that the true behavior of each
function is parabolic. The three conditions defining each of these parabolic
variations are,

k = C; A, A 0 (78)

k = 1; AO = Aýo, A = o(7)
0 079

=0 d("•) d(d) d(*) d(dý) (8o)

The last of these equations follows from eqs. (70), (71), and (74). Eqs.
(78) and (79) define two points on a parabola; eq. (80) equates the predicted
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linear slope at the first point to the parabolic slope at that point.
Applying these conditions, we obtain the approximate nonlinear variations as
functions of k,

A = (AO - d4o )k + d k° k

and V41y
nd Ap(k) = Ao- d# k2 + d#ok

Now suppose we wish to find that value of k which will provide a specified
nonlinearity in the payoff or constraint functions. Substituting eqs. (81)
and (82) into eqs. (72) and (73), we obtain,

k - (83)ko

- NL°

and

k NL
SNLO (84 )

'3

That is, the desired value of k for each quantity is the desired value of its
nonlinearity divided by its nonlinearity on the trial trajectory. A reason.-
able value for the nonlinearity desired can be obtained from the geometry of
a parabolic variation. Consider any of the parabolic approximations to the
optimization functions f, as shown in Figure 3.

E
ON

Cý

- - A/

-- D B

! ! 'Step-size k

Figure 3 - Parabolic Variations

For a curve such as OAB, the maximum gain in the function occurs at A and if
OAB is parabolic, the nonlinearity is
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thanr manincresueh Simirily, the Figurol 5sysetemaproladstoaionuhs other saest

which may reduce the value of k; these tests will be described later.

To summarize these tests: their purpose is merely to assure that at
least one of the optimization functions is reasonably linear, a modest
requirement for a reasonable perturbation. The use of nonlinearity in the
above manner is the first basic principle of the control system.

The second basic principle is that of correcting the constraint
errors gradually. There are several reasons for eliminating constraint
errors by a small amount on each cycle, rather than by attempting to elimin-
ate the entire error in the first cycle.

First, we are working with nonlinear equations ; the 1.-rge steps
which are often required to eliminate the entire constra.int error will fre-
quently be quite outside the range of linear perturbations; hence, '.ter a
set of time-consuming trials of decreasing step-size; the analyst will be
reduced to the gradual elimination of the errors in any case.

Second, it should be noticed from eq. (65) that out of the control
variable perturbation magnitude, DP2, an amount equal to dý'I•- d* is
required to provide the desired constraint changes. if this portion of DP2
is too large, the main payoff function change, eq. (68), will be primarily
the result- of constraint changes, rather than an inherent improvement in
the trajectory characteristics. In this case, there is a danger that the
optimization will degenerate into a mere terminal constraint search.

Third, it must be noted that it is possible to introduce local
extremals into a problem by means of terminal constraints. This becomes
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clear from an elementary example in the ordinary calculus. Consider the
problem of maximizing a function z(x,y), which has a single optimal value as
in Figure 6.

Now suppose we seek extremal values of z(x,y) subject to a constraint

g(x, y, z) = 0 (86)

It is cleAr from the diagram that in the particular case considered,
there are two solutions; one at A and one at B, the absolute optimum being
that at B. Now consider the solution of this problem by the Method of
Steepest Descent, comn.:ncing from point C. If achieving the constraint is
the dbminating influence in choosing a step, the solution will tend to
traverse a path of the nature CDA, and hence, the lower extremal solution.
Onf the other hand, if in choosing the step, one initially pays little atten-
tion to the constraint, then the likelihood of traversing a path such as CEB
is considerably increased.

We see from this discussion that there are excellent reasons for not
attempting to eliminate the complete end point error at each step; accord-
ingly the control system initially attempts to remove constraint errors of
magnitude

dlpi = AC* (i = 1,2,...,p) (87)
1

where AC* is a small nondimensional quantity.

After N cycles, if certain requirements are met, the control system
will be attempting to eliminate an error of

d0i - N'ACiii = Cpji (88)

provided N AC• i< 1. When N • AC*i_> 1, the amount of constraint error to
be removed is given by

d0i= (89)

This is the second basic principle of the control system, the gradual
removal of constraint errors in order to emphasize the payoff function role
in the initial cycles of a descent.

The two principles of this section are not adequate to ensure con-
vergence. It has been necessary to append many other logical tests to the
control system; some of these will be described in the next section.

c. Secondary Tests

The two principles outlined above are far from sufficient to ensure
convergence to the correct solution. They must be supplemented by many
secondary decisions, mainly of an indirect nature. The more important ones
will now be listed, not necessarily in the order in which they occur in the
actual control system.
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(i) Determination of Step-Size Ma0nitude for First Trial of Each

The Dter-aion ofgnte DPo0 used in the first trial of each

cycle except the first is automatically based on the values used in preceding
cycles. For the first cycle, an arbitrary value must be specified by the
analyst; this value should be chosen on the large side; the control systemwill very quickly determine the correct value by making trll trajectories.

After each cycle, in an attempt to inhibit any tendency to agradual decrease in DP2 , the control system determines the trial value fromthe value finally use& on the previous cycle, DP2_ 1 , by the expression

DP2  2 DP2  (90)0 N-i

provided certain other conditions have been met. These o'her conditions are:

(a) The quantity,

grade = I - I I (91)

is the gradient of 0 with respect to DP2 if the constraint cl. nges
are zero; that is, it is the measure of how close any trajectory
is to the optimal trajectory having the same end constraints. Now
grad 0 is usually the difference of two very large numbers and these
numbers are the result of lengthy numerical computations. In this
situation, small numerical errors can lead to the difference
between positive an. negative results for the value of grad €,
when a trajectory approaches the optimal trajectory for a particular
set of end points. As these may not be the desired set of end
points, and as grad 4 is essentially a positive quantity (see eq.
68), we must recognize that negative values of grad 0 merely mean
that a trajectory is the optimal one to its own set of end points.
All that remains in such a situation is to perturb the end points
toward their desired values. This is accomplished by setting

Z!,2
D- dip, DP2 " d I di (92)

0

(b) On occasion, an idiosyncrasy in a particular trajectory may cause
the step-size to become severely reduced; this will usually be
accompanied byan excessive number of trials. After six, the control
system will force a final trajectory to be computed. in the next
cycle, the magnitude of the control variable perturbation DP2 for
the first trial trajectcry will then be computed by the expression

DP _(DP (DP 2 ) (93)

instead of by eq. (90). -his value is used in an attempt to main-
tain a reasonable perturbation magnitude should an excessive number
of trials occur.
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(2) Determination of Step-Size Magn tude After First Trial

After the first tr-al, the step-size magnitude is basically
controlled by the step-size parameter k, according to the expression

2 2 2 (9k)
DP =k DP(40

There is an exception to this rule when the step-size is "bouncing." By

bouncing we mean that either a value of DP 2 equal to or smaller than one

already demonstrated to be too small, or a value of DP 2 equal to or greater

than one already demonstrated to be too great, is again predicted. Figure

7 demonstrates one way this phenomenon can arise.

A value ol DP 2 has been computed from a value of the step-size

parameter, klow; a trial is made and the controlling function f takes on
the value at A. A parabolic extrapolation is made and a value of k, corre-
sponding to point C is computed. If this value of k is beyond the point

2k (5
khigh low (95)1 10
*5

• C

%m

f(k) AParabolic extrapolation from A
True non-linear behavior
Parabolic interpolation from B

Figure 7 - Step-Size Bounce Induced by Parabolic Approximation

the control system will compute a new trial trajectory corresponding to a
* step-size of khigh, i.e.,

D~

k = kigh" (96)

On completing the trial, the controlling function takes on the value at B.
The parabolic interpolation from this point predicts a value at D less than4
klow and without a "bounce test," a trial would be taken with

k =k

Fiur 7- - tpSz one nue yPrboi prxmto
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and a closed loop established. Accordingly, if a situation of this nature
arises, eq. (97) is overruled and the step-size magnitude is determined by
a midpoint search

2 2mmDP. + DP

DP2 Dhigh ~low (98)
DP= .2

(3) Limits on Dimensional Travel of Payoff Function

The step-size parameter k is determined by the first principle
of Subsection 2, that is, to control with the most linear of the optimiza-
tion functions. This decision is overruled if such a step causes the
dimensional travel of any of the optimization functions to become :xce:.7ve.
Constraints are placed on the dimensional travel of the payoff function in
the following manner:

"(a) If the problem at hand is one involving maximization of the payoff
function,

~A -" - 0¢> (99)
A - ADV

(b) If the p.roblem at hwid is one involving minimization of the payoff
function,

1ADV 1 Av (100)

The permissible adverse 4 travel magnitude, *ADV, is determined
by the expression

ADV = Max i-o -50 (101)

where ON-1 :s tle value of the payoff function at the termination of the last
cycle and *ma7. is the greatest value of the payoff function absolute value
obtained at the termination of any of the previous cycles.

The adverse 4 travel test, described above, has its basis in the
principle of emphasizing the payoff function behavior. Problems are often
encountered in which, due to the initial terminal constraint errors, the
performance, as meassred by the payoff function, is better on the nomr ial
trajectory than it is on the final optimal trajectory. A problem of this
nature inevitably involves the loss of performance during the major portion
of the descent. Now the greatest obstacles facing the analyst in applying
the Steepest-Descent Method are false convergence and failure to converge in
a reasonable number of cycles. Both these phenomena are inhibited by the
a rerse 4 travel test when performance has to be given up in order to achieve
the end points; Figure 8 demonstrates how the test inhibits false convergence
in a problem of this type. Without the adverse 4 travel tests, the first M
cycles are spent in reducing the constraint error at the expense of 4.
At point (A) in the convergence, if all went well, emphasis would return to
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Figure 8 -Adverse s Travel Tests Inhibits False Convergence

Sthe payoff function and the optimal trajectory obtained at point B. This
° type of behavior is illustrated by the lines 0AB. At point (A), however,Sthere is a risk of false convergence and the descent may continue in the man-

ner of 0AC. The adverse travel test, on the other hand, will not permit
the initial rapid loss of and convergence with this test included is far
more likely to be of the nature of the broken line OD.

Again, in a problem where the performance must tend to deteri-orate as the constraints improve, a very irregular convergence may result.This is demonstrated in Figure 9; initially a decline in performance occursas the constraints are improved until the point A, is reached. At this Wpoint emphasis returns to the payoff function and-a set of steps which improve xWperformance at the expense of the constraint are undertaken until the pointB1 is reached. Here emphasis returns to the constraint and the processArepeats. The resulting convergealce tends to have the appearance of the lines0AIBIA2B2.. t he adverse 0 trdvel test inhibits this irregular behavior andtends to lead to a convergence of the nature of 0C. 
M
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It should be noted that without the second part of the decisionof eq. (101), 4 would be unable to change sign; if the end points were attain-able with O = 0, a false convergence such as OD would result. This provides asimple example of how an over-restrictive rule in the control system can lead
to false convergence.

SWhenever the * travel fails to satisfy the appropriate inequalityof eqs. (99) or (100), the parabolic assumption is applied to compute a valueof k that will result in a satisfactory step by solving the equation

(o- d)k + do-k = (102)
ADV

This results in, 
n 1-

-do (do) + 4(Ao - do)).,D (13
I( - d4)O

iADV

0
to

. Parabolic approximation
through A

c• change 
U

'ADV Nnlna

A

Figure 10 -Application of Parabolic Approximation to Adverse 4 Travel

The solution must have one positive and one negative root, provided the cal-culation is performed only when the adverse 0 travel is too great, as can beseen from Figure 10. When k has been computed from eq. (103) it is multipliedby a factor of .9 in view of the approximations involved so that finally theacceptable value of k, based on adverse 0 travel, is given by

(-d +(do + 4(Aý - do)0
kV 45 

l4ki- Ao - dA (i01)
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(4) Limits on Dimensional Travel of Constraints

Rules which specify the amnount of end point error to be elimi-
nated cn each trajectory have been given in Section III.2.b. Due to the
nonlinear nature of the trajectory equatior"- ,d the necessity of attempting
to take large steps at each iteration, the tct~aa.. constraint changes may differ
considerably from those asked for. Accordingly, another set of rules, which
specify acceptable limits on the end point travel, must be used; it has proved
convenient to state these rules in the form,

*'BWD. d*i p. A *FD dip, i. :S 0 (105)

and

*BWD. d*i. z Ap 1 :FD d (106)

The permissible nondimensional limits on adverse constraint
travel, *BWD' and favorable constraint travel, ip are fuinctions of the
amount of nondimensional constraint error being e~iminated, the number of
cycles completed and the number of cycles since the particular constraint
error changed sign. If less than ten cycles have been completed since the
constraint error changed sign then:

IPBWD 1

ýw = 3, Ci .5 (107)

ý'BWD =.

ýFD= 2.5, .5 C* < 1 (108)

'5' BWD =.025

=1.5, Cip>1 19

chage sinIf more than ten cycles have elapsed since the constraint error
chaned sgnit is assumed that some difficulty in meeting the constraint

exits. In hiscas, FWD an IBWD are based on the number of completed
cycles.

* 2.5FWD.

*B4 .5, N <20 (110)

'P =1.5FWD.

VBWD .025, N>20(1)
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ii• In Section lll.2.b, it is indicated that normally

Si ii=•There is an exception to this rule. This exception occurs when the step-size
•- !!!•"magnitude on the first trial of an iteration is less than the amount required

V" 
ii 

i TlV4

Vto provide the desired constraint change, and grad 5 is positives When this

-• i ii•condition occurs, C•p is successively reduced by AC,, until the constraint
-- -''-'•.change is less than the amount the DP2 is capable of providing.

-_"II.'•With *BWD and 'pFWDp specified, the control system merely checksin which direction each constraint is travelling and computes by the now
manfamiliar parabolic approximation, what values of k, if any, will cause each
t p constraint to reach the boundary toward which it is traveling. The method
is demonstrated in Figure 11 for a constraint which must be increased and has

moved in the correct direction. If the trial point is at A, the parabolic

A2

iNi

Negative root

Permissible favorable
c constraint trave

"iB
Figure 11 - Application of Parabolic Approximation, Constraint Moving in Desired Direction

approximation must behave in the manner of AIA2 . The solution we seek is at
and the negative root may be ignored. If the trial is at B, the approximate
solution behaves in the manner of BIB2 and we seek the point B. If the trial
is at C, the curve behaves in the manner of C0C2 and there is no real value
of k which will produce a point on the forward boundary; in tnis case, the
limit on k is ignored by setting k =Co.

FWD
In Figure 12, we consider again a constraint which must be

increased; here, however, the motion is adverse. A trial such as that at point
D indicates that the point we seek is at D, the negative solution may be ignored.
Similar sketches to those of Figures 11 and 12 may be drawn for a constraint
which must be decreased.
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Z• Figure 12 - Application of Parabolic Approximation, Constraint Moving in Wrong Direction

S~Let the value of k which places a constraint at the appropriate

i '•,• boundary on its travel be denoted by k•TVL, and if the solution is complex

S • ~ ~let uas adopt the convention that ,•VL= so that

TV(L

•• when

di +(Ap•,pP•> (113)M Z

i and

|V

SkCTVL = •k, dDp + - <0 (ll)

where

L= BD d, if the constraint has moved in the wrong direction

Figure 12 -Ap = of if the constraint has moved in the right direction

.; v• and in eq. (113) we must take the smalle-st positive root.

Let(5) Conditions for lgnoring Dimep e onal Constraint Change Test

bonr In some circumstances the limits on endpoint travel of Section

lt '2 are ignored For example, if a constraint has been obtaintd within the
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S~acceptable limits, •TOL which are specified by the analy.st for the parti-

cular problem, then 1?s endpoint travel ceases to be monitored unless the
constraint once again drifts outside the acceptable limits. This decision
is made in order to avoid the possibility of limiting step-size magnitude
on the basis of a constraint which is essentially met, while considerable
errors still remain in other constraints, or a significant amount of perfor-
mance gain remains.

The limits of Section 111.2 are also ignored for a constraint
error which is being reduced more rapidly than another constraint error.
This is achieved by creating a measure of the endpoint errors at the termin-
ation of the nominal trajectory. These errors are denoted by PERR" When,
after a number of cycles, all the constraint errors have been halved, *ERR
is also halved. This process is repeated until the computed ERR are less
than i :.., at this, point ,i is set equal to hPTOL. Any time a particular
endpo.nt error is less than ýERR, its dimensional endpoint travel will not
be tested during the following cycle.

It should be noted that if the hTOL are zero, a danger of falseconvergence exists, for if the constraints are essentially satisfied before

the greatest performance is obtained, a situation of the nature of that
depicted in Figure 2 exists, and the limits on constraint travel may inhibit
the development of performance.

It should be noted that whenever the controlling function (the

one with the greatest k based on linearity) is a constraint, its endpoint
travel is always checked, for there is no point in controlling with a con-
straint beyond the permissible limits on its travel. If the limits on the
travel of a controlling constraint cause the step-size to be less than it
would be if based only on linearity, and that constraint is within PERR,
then an attempt to control with the next most linear function is made. As
the limits on the first controlling function travel can then be ignored, it
is possible that a larger step will result from the use of the second con-
trolling function. The larger of the two step-sizes obtained in this manner
is then used; if necessary, this process is repeated with the next most
linear function, etc.

(6) Majority Vote Test

Only those trajectories on which at least half the optimization
functions of interest improve will be considered satisfactory. The optimi- 3K4.
zation functions of interest are defined as the constraint functions having
errors greater than their respective *ERR, and the payoff function provided
the number of optimization functions of interest is odd or zero.

A trial trajectory which fails to satisfy the majority vote
test is not permitted to lead to the final trajectory of a cycle (valid step).
A valid step which fails to satisfy the test is overruled by another valid
step. In either case, the new trajectory is computed with a step-size based
on k = .5.
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The control system essentials have been presented; it may be noted
that wherever possible, the payoff function change is emphasized at the

expense of the constraint changes.

Choice of step-size after the first trial is based on both linearity
and di~mensional changes. A careful examination of the various tests will
reveal that the step-size parameter is basically given by the expression

I g

k Cin(/ k, ) k¢, ka( vl n (kk,,~ 1(l 15)

This value of k must then be checked against the bounce test and the majority
vote test. If

S.5 • k _< 2.0 (116)

a final trajectory is computed; otherwise, a further trial trajectory at the
appropriate limit is computed.

After a final trajectory, the majority vote test and the adverse travel

test must both be satisfied; if they are not, then the final trajectory is
recomputed with a step-size determined by k = .5 or on a computed ktL.

3. CTLS2

a. Introduction

The philosophy of CTLS2 may be summarized as follous:

4 (1) At the beginning of each cycle decide on the type of improvement
a fa t to be sought in the trajectory during that cycle, i.e., decide

on the relative importance of removing constraint errors and

improving payoff.

i (2) Select a cont-'ol variable perturbation mode based on the above
decision. This mode will not be altered on successive passes
during the cycle.

(3) Devise a "figure of merit" that will be a measure of the improve-

ment of a given perturbed trajectory over the nominal trajectory.

(h) Integrate a series of trial trajectories in order to determine
the step-size that will give the best value to the figure of

merit.

Each of the above four items will be discussed individually. There

is almost nothing in the development given in Section II that is of any help
decision. Thsmd ilntbIlerdo ucsiepse

drghcl

(3) D ea-vi", -r" that wi- be a m of t improve-

men ofagvnprubdtaetryoe'h oia rjcoy
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with items (i) and (3). The perturbation mode follows almost directly from
the results of Section II once the U and W matrices are fixed. The problem
in Item (4) is to find the best step-size with the smallest possible number
of trial trajectories.

b. Procedure for Determining Type of Improvement to be Attempted

Some light can be shed on the problem introduced by the addition ofconstraints to the optimization problem by considering a very simple two-
dimensional case. Let f(x,y) and g(x,y) be functions of two variables with
continuous first derivatives. Suppose one wishes to determine the point
(x,y) which maximizes f subject to the constraint g(x,y) = 0 (see Figure 13).
The nominal point N neither satisfies the constraints nor gives a very good
value to f. The problem is to move from N to the optimum point 0 in the
smallest number of cycles.

At the beginning of each cycle the program computes the gradients of

f and g; this is the only information it has. Thus the program has local
information regarding the directions to move to remove constraint errors
and to improve payoff, but it has no global information.

Suppose that by some cycle the program has moved from point N to
point C. At point C the constraint, g(x,y) = 0, is satisfied. The direc-
tion the program would move on the next cycle would be in the direction of
improving payoff along the tangent line of the constraint. Thus for even
small step-sizes the constraint will no longer be satisfied. If the program
will allow a significant constraint error to come in at this point, the step
will be large as showi. by Figure 13A. If the program allows only a very
small crror to come in, then it will be able to take only a very small step
as shown by Figure 13B. Note the difference in what could be accomplished
by two cycles as the program moves from C to D to E in Figure 13A and in
Figure 13B.

The above example might seem too simple to provide any insight into
the more complex trajectory optimization. The basic problem is the same,
however; the program computes only first order effects and with only first
order effects it cannot hold the cor~straint to within small tolerances and
still make progress. In case of more than one constraint, progress may con-
sist of removing the constraint errors that are still large as well as
improving payoff.

adteOn the nominal trajectory the constraint errors are usually large

and the payoff is poor. One can follow any one of three procedures:

(1) Ignore payoff, bring the constraint errors to within reasonablerg
limits, and then attempt to follow the constraint surfaces to
the optimum. After gaining as much payoff as possible, the
error limits are reduced and the process is repeated.

(2) Ignore the constraints, attempt to improve payoff, and then
remove the constraint errors while losing as little payoff as
possible.

41

-A I



-.
5'-

z-'w - v

A Optimum

9.0

-~ xl

Figure 13A -Constraint Boundary

E Optimum

D

g (x y)=0
-C

I Figure 13B - Constraint Boundary

F 42

qt,4 --.



S5

II

i] (3) Work on both the payoff and the constraints from the beginning
with the object of achieving the optimum value of payoff just
as the constraints are satisfied.

Approaches (2) and (3) are not well adapted to this program because
of the large variety of problems it is designed to solve. In both cases it is
difficult to put just enough effort on the constraints so that the constraints
come in just fast enough on all types of problems. With some problems the
constraints will be satisfied before the optimum is reached; with others time
will be wasted because the constraints are brought in too slowly. If the 'MU
constraints are satisfied before the optimum payoff is achieved, then it will
be necessary to follow the constraint surfaces as in the first approach.

CTLS2 uses the first approach. The vector

(17 (l17)SERR ( 'ERR ' "'ERR1 2 p

th 1is introduced. *ERR. represents a reasonable amount to let the i constraint

1 ~~th ''error vary. If the absolute value of the error is less than 'ERR thenoth iths ta te

the constraint is said to be within its belt. It is unfortunate that the
program has no means of computing good values for the components of ERR this
is because no first order effect is useful for computing good values
and the program computes nothing except first order effects.

Let

S'TOL = ('TOL 'TOL2' ' *'TOL ) (118)
1 2 p.J • •"th

The i component of TO is the largest error that the analyst is willing to
th TOL 4'

•, • .t h
tolerate in the i constraint on the final answer. When CTLS2 is used it

4~i is necessary to input positive values for all components of and 'TOL"

If the components of are chosen too small, too many cycles will
ERV

be requ:red to produce a good value of payoff. The possibility of endingUP
at a false optimum is very good in this case. If the components of •ERR are
chosen too large, too much payoff will be lost when the constraints are
brought in. This would mean that the time spent gaining this payoff was a
waste of effort. Experience with the program has clearly indicated that
choosing the components of ERR too small is the more serious error. If the
components of i6TOare chosen reasonably well, good values of the tERR are
usually ten to one hundred times TOL1

The choice of the *TOL vector depends on engineering considerations.
If it is chosen unreasonably small it will needlessly increase running time.
It will not influence the payoff appreciably, however.
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CTLS2 has two phases, phase 0 and phase 1. How the contrtol variable
perturbation mode is computed depends on which phase the control system is
in. On the first cycle the program goes into phase 0 and stays in this phase
until

< ý'ERR. 1,2, .. p) (119)

and then enters phase 1. While in phase 0 the control system ignores payoff
completely. The program sets

dBi = -•i if •i > ERR.

ifTEXP

Sif < ERR. (120)•ERR.

and then computes a perturbation mode such that the predicted change in the
constraints is dg. The amplitude of the perturbation is adjusted from pass
to pass so that the step-size agrees with the desired DP2 .

The object in phase 1 is to apply just enough effort toward the
removal of constraint errors to keep the constraints within their belts. The
perturbation mode is composed of two components: the constraint correcting
component which predicts the desired change in the constraints ignoring pay-
off and the payoff improving component which predicts an improvement in payoff
with no change in the constraints. Since the actual result of a perturbation
cannot be known in advance, there is no obvious way of deciding how to add
these two modes.

CTLS2 uses the following scheme. It was decided that the most
reasonable apriori guess of the step size to be used on a given cycle is
the one used on the previous cycle. Thus, the program sets

DP = (RATIO) DP (121)

where DP2 is the value of DP2 on the last pass of the previous cycle and
RATIO (nominally set to two) is a factor that may be input to change the
emphasis on payoff. The program als) sets

TEXP

d.i " ti (i = 1,2,...p). (122)
1ERR.

A control variable perturbation mode is computed which will give a predicted
change, dB, in the constraints and as much improvement in payoff as possible
when DP2 has the value given by eq. (121). As DP2 changes from pass to pass
the predicted change in each function will also change in proportion to DP2 .
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SiAt some point in the convergence of a problem it is necessary toU
•'-I ||iL "reduce the components of 4'ERR so that the relationships

C51

•"i *i <__TOLi( = 1,2,.. .p), (123)

S• will be satisfied for the final solution. Each time the '•ERR'S are reduced
S---•CTLS2 returns to phase 0 until relationships (119) are satisfied, and then

i again returns to phase 1. The program has a number of options for determin-
ing when and by how mvch the 4 ,ERR'S are cut, the details of which are givenin Volume II of this report.

The nominal procedure is to divide each component of 4,EHR. by ten
Son the first and second reduction and set 2

Jimg

4'• ERR. = -24, TOL. (i = 1,2,...p), (124)

Aon the third reduction. teR is never reduced to less than 1/2 in sTOLi.
Any time the CTLS2 leaves phase 1 with the relationship (123)

(all satisfied the problem is terminated. If relationships (123) are not
will b satisfied the third time CTilS2 leaves phase i, the program goes into phase 0iTonly until those relationships are satisfied and then terminates the problem.The program nominally leaves phase 1 after completing three cycles in this
phase with no gain in payoff.

c. Determination of Perturbation Mode

n If the weighting matrices are fixed and the decisions discussed in"o the previous section have been made, then the determination of the control
"variable perturbation mode is mechanical. That is, the desired perturbationsmode follows directly from the theory of steepest descent. In phase 0 the
Sperturbation mode is given by

ph(s) = (wno-(Gs) Iai in pay

g••li -fl , ni -l • (126)

and for this perturbation

SD2 = d8 'l (27

vIn order to obtain the correct amplitude the perturbations must be multiplied

petrainmoei ie by ý,,,

2 .

-- /DPdesired
d8' I-1 d, (128)

4 , • q = ==4=

I2A



- !~
'OEM

In phase 1 the amplitude of the constraint changing mode is not
changed on the first pass unless

DPd <d' I dO (129)
9desired-

in which case the perturbation is computed the same as in phase 0. If

2 -DP >d I dB, (230)
desired

a payoff improving mode is added to the constraint changing mode. The sum
of these two modes is given by eqs. (65) and (67). Note that if RATIO is
increased, DP2 will increase and the proportion of the total mode devoted to
improving payoff will increase. On passes after the first, the amplitude is
changed in proportion to the step size.

d. The "Figure of Merit"

The problem of finding a reasonable step size is discussed in this
section and also in Section (e). Since the CTLS2 control system does not
change mode shape from pass to pass it will be assumed that the mode shape
has been fixed and the only problem remaining is to determine the step size.
The mode shape is based on linear or first order effects; the step size will
be based on nonlinear or second and higher order effects. The program has no
means of computing these effects except by fixing DP2 and then actually
integrating the perturbed trajectory.

Suppose one were to integrate a series of perturbed trajectories,
beginning with a very small value of step size and then increasing it in
small increments. For small values of DP2 , Aip and Aý would differ from dip
and d#, respectively, by a small percentage. Thus, for sufficiently small
DP2 all functions would move in the desired directions and hence, the tra-
jectory would improve as DP2 increased. Note that d# and hence AL might
represent deteriorations in payoff but the decision was made, when the mode
shape was determined, that the gain in the constraints would offset the loss

•'• ...... in payroff.

As the step size is increased a point will be reached where one or more
functions will begin to deteriorate. In the case of the payoff it might be
the increasee. rate of deterioration that is of concern. A constraint might
continue to move in the same direction but move too far, that is, beyond its
desired value. In this case further movement in that direction represents
a deterioration.

When the first few functions begin to deteriorate the loss will
probably be offset by the gain in those functions still improving. It may
be possible to increase the step size by an order of magnitude or more before

- the rate of gain of the improving functions does not offset the rate of loss
of the deteriorating ones. This means that if the step size were to te
selected so that no function deteriorated, the number of cycles required to
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achieve optimum might be increased by an order of magnitude; perhaps 200
instead of 20, for example.

Suppose that on the Nth cycle the ith constraint was almost satis-

fied. Then the control system will ask for • very small change in this
"constraint on the N+lst cycle. Hence, the term in eq. (71) will be small
and easily overwhelmed by terms of higher order than the first even for small
step sizes. A small deterioration in this constraint would not be important
since the program could easily remove this error by devoting more effort to
it on future cycles.

Now consider a case in which the jth constraint error was large and
all others small on the Nth cycle. The control system will ask for a large
change in the jth constraint on the N+lst cycle. That is, the term in
eq. (71) will be large. Suppose, however, that the nonlinear terms are so
large that the jth error increases for even small step sizes. In this case
the jth constraint is a difficult one to satisfy and should receive much
consideration in the determination of DP2 . In fact, it is very likely that
any effort used to improve the remaining functions before the jth constraint
error is reduced will be wasted effort.

There is one more situation that should be considered. Suppose all
constraint errors are small and a large portion of the control variable
perturbation is to be devoted to improving payoff. Then small losses in the
conr-•raints would not be important if the gain in payoff is sufficiently
great.

The most usual situation is some combination of the above. There are
other considerations which could and perhaps should be used in step size selec-
tion. The step size control in CTLS2 grew out of the following considerations:

(1) A decision as to what would be regarded as an improvement in
the trajectory on a given cycle was necessarily made before a
perturbation mode shape could be selected. This decision
must be reflected in the criterion used to select the step size.

(2) The criterion must be of such a form that if the program runs
two trajectories it will be able to tell which one satisfies
the criterion better. Thus the program should never accept a
step size inferior to the best one it has tried.

(3) The criterion must further be of such a form that it would be
possible for the program to search for and find the step size
that would give the greatest improvement in the trajectory.

It was felt that the above three requirements could only be met by
devis. ng a number, or "figure of merit" to be associated wizh each perturbed
trajectory. The figure of merit used is

PF=K$ - K 2V (131)
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where the K's must be determined on each cycle. The *i and 0 refer to the
constraint error and payoff, respectively, of the perturbed trajectory. The
form of eq. (131) is suggested by the augmented penalty function approach
(see Reference 5). It can be made to satisfy all the items discussed above
reasonably well by proper determination of the K's. The step size that gives
the best value to PF is considered the best step size and no other criteria
are applied. Future use of the program might indicate that additional cri-
teria may be necessary, but the present author can foresee no need for any
such criterion except possibly for special problems.

Examination of the function PF shows that if *? decreases for each
i = 1,2,...,p and 0 increases, then PF would increase. The so-called aug-
mented penal.ty function approach fixes the K's and then treats the problem

Sas though PF is the payoff and there are no constraints. It is clear that
if the Ki's, i = 1,2,...p, are sufficiently large the constraints will be
satisfied to within tolerance when PF has its optimum value. The method does
not seem to work well in practice. If the KI's, i = 1,2,...p, are made too
great at the beginning of the problem the method tends to hang up at non-
optimum solutions. If there are more than one or two constraints and the
Ki's, i = 1,2,...,p, are not in the proper ratio to each other, the method
has trouble satisfying the constraints. The determination of good values of
the K's can be quite difficult.

For the purpose of selecting the K's, PF is considered to be an aug-
mented penalty function. The K's are selected so that the control variable
perturbation mode shape which would result if PF were used to determine the
"mode shape is the same as that being used by the program. From eqs. (40)
and (131) it is seen that XpFf. is a solution of the adjoint equations satis-
fying the conditions

f ,(s+l)i Ys+l
PF sf +IXpFS1 PFQ

(132)
s.~f+,(s+l)i S+l 'sf

[ppF+(. Pjf- ., } sf (s 1 =,2,...S)
6sf .Ix

where the terms with the superscript s+l drop out if s = S. From the defini-
tion of PF it follows that

p

PFxsf = K 0 f- 2 g K. ýi *ixsf (133)

and

SK •-2 • K (134)
,~ )-

0

Thus, it is seen that A PFO may be expressed as
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* Pl KA -2 K. 4,i X~pi * (135)
XP~n 0=1

Let C =K (136) 'ý
0 0

and

C. -2 K. 4, i= 2,... ,p.(137)

The C Is may now be computed from eqs. (65), (67) and (135), so

DP -dOII do
Co= 4)) 44 (138)

4, 4I d,(19

and
2 -DP -dB' I dO

004 0)4 4,4 4,4

where

*C. C~p.+ Cq (i 1,2,...,p). (141)

C4, represents the contribution of the constraint changing mode and CO, repre-
sents the contribution of the payoff improving mode. C and the components
of C4 are set to zero if the payoff improving mode is not added.

The K's are computed from equations (136) and (137) and then are
altered so that deterioration of those constraints which are nearly satis-
fied will not be nearly so effective in limiting the step size. Thus, the
program sets

K. =K if Y

4,. (142)

-Max .0 51 Ki i
EIRR. i :SIER

he The above adjustment creates a problem. Suppose on a given cycle

teprogram adds in a payoff improving mode but the predicted change in
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payoff is still a deterioration. The K's were originally computed so the
predicted change in PF would be positive, but this depended on the improvement
in the constraint offsetting the loss in payoff. When the weight on some of
the constraints is decreased the predicted change in PF may be negative. To
solve this problem it was decided that if the predicted change in the payoff
was a loss then Ko would be set to 0.

e. Determination of Step Size

Once the K's of the previous section have been determined then PF is
a function of step size, i.e.,

PF PF -- ) (143)

The only problem that remains is to find the value of DP2 so that PF will be
maximum. On the first pass of each cycle except the first, DP2 is computed
from its value on the last pass of the previous cycle. On the first cycle it
is nominally set to .1.

After the first pass, values of PF are known for the value of
used on the first pass and for DP2 = 0. If the derivative of PF with respect
to step size were known it would be possible to obtain a parabolic approxi-

mation of the function PF i This could be used to predict the value
of DP2 for which PF achieves its maximum. Let

and

C'n= (K, -2ýKl...,-2*pK). (145)

Then it can be seen from eqs. (57), (58), and (59) that

IpFPF = c' (146)

Thus

d PF 1' 1•pF

d "7 (147)

After each trial trajectory, a point is generated on the graph of
change in payoff (APF) vs. step size, unless cutoff was missed. A point with
positive APF is called a good point and the step size is called a good step.
A point with negative APF is called a bad point and the step size is called
a bad step. The step size on a trial trajectory which misses cutoff is also
called a bad step.

50

I -.X



4ýt

4 "F

SFromh tereia onsidera tions the rp of PFv.sesize
* must rise to a peak from the origin and fall off. Our objective is to arrive

i• at a good point with step size as close to this peak as possible. We attempt
i~ i to do this by a parabolic search procedure.

S~After each trial trajectory which has missed cutoff, partials are
i turned off and another trial will be made with step size one half the last

l trial step.

N7,' .~ AM

S~After each trial trajectory which has not miss• cutoff, a parabolic
i• fit is made to the last trial point and any previous good points. If no pre-
• vious good points are available, the fit is made to the origin, the last trial

Froman the athertica cos dertostegrpPFA vs tpsz

l~ •point, adteslope atteorigin, dF . If only one previous good

spoint is available the fit is made to the origin, the previous good point, and

the last trial point. If two previous good points are available, one lying
on either side of thel trial pi n the fit is made to those three points.
If two such good points are not available, but two good points have been found
which lie on one side of the last trial point, the fit is made to those threeia

points.

After the fit has been made, a preliminary step size to use for another
trial pass is determined. If the parabola is not concave downward the pre-
liminary step will be the smaller of five times the last trial step and 9/10
the smallest previous bad step. If the parabola is concave downward the step
size is set to the larger of 1/lO the last trial step and the smallest of
five times the last trial step, the step size coordinate of the maximum
point on the parabola, and 9/10 the smallest previous bad step.

If less than ten passes have been made and the last trial step had
positive rPF, the parabolic fit and the preliminary step size are used to find
the predicted change in payoff from the parabola. If partials were taken and
the predicted gain is less than 25% the last trial is accepted a valid step.
If partials were not taken and the predicted gain is less than e%, partials are
turned on and another trial trajectory is made using the preliminary step size.

If ten passes have been made and the peak has not been found, the last
step will be taken if it is a good step and partials were taken. If it was a
bad step, the program will go to the best good step size so far, take another
pass with partials on, and accept that pass. If no trial so far has produced
a good step, the step size is halved and a trial made. Halving will continue
until a good step is found or 15 passes have been made and the program termin-

ates. If a good step is found, one more pass at that step size will be made
with partials on and that pass will be accepted.
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SECTION IV
il WEIGHTING 14ATRI]"CES

iC. Introduction

The problem of selecting weighting matrices has been by-passed in the
previous sections. This seccion deals with the problem of choosing weigh-
ting matrices which will increase the rate of convergence of the problem
and decrease the risk of converging to a non'ntimal solution.

There are two important points to remember in trying to select a rea-
sonable weighting matrix. The first is that it is seldom possible to
reduce the sensitivities of a given control variable with respect to the
function being optimized by more than two or three orders of magnitude.
If there are two control variables and the sensitivities of the first are
three or more orders of magnitude greater than those of the second, the
second may never receive sufficient perturbation. That is, the first con-
trol variable may oscillate around its optimum value, causing the step size
to be reduced and the second control variable to get hung up far from its
optimum value.

A second important point is that there are many sets of values of the
control variables which will satisfy the constraints. If there are no
data errors and the problem is a reasonable problem, it is extremely rare
for the program to have trouble satisfying the constraints. If a given
constraint is not coming in, it is probably because the control system is
not devoting enough effort toward satisfying that constraint. There is,
on the other hand, only one set of values of the controL variables which
satisfy the constraints and optimize payoff. Thus the primary concern in
selecting weighting matrices is the effect that they will have on the
payoff function.

The original program, Reference 1, contained various weighting matrix
options. The present program has retained these options and added one
additional option. As was true in the casc of the control system, the
theory does not answer the necessary questicns. Therefore the various
weighting matrix options are based on the experience and intuition of the
person devising them. Subsection 2 is essentially as it appeared in the
original formulation.

2. Weighting Matrix Options Based on the Sensitivities

a. Multiple Control Variable Optimization

The most insidious types of convergence failures are those in
which the payoff function fails to reach the optimal value, while at the
same time the terminal constraints are achieved. This problem is pre-
valent among optimization problems involving multiple control variables,
in the absence of a weighting matrix. The reason for this behavior
becomes apparent when we consider an optimization problem involving two
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control variables, a, and a2 , where the weighting function W(t) is absent
and al is consistently more powerful than a2. By more powerful we mean
that a small change in al will produce a greater change in the payoff func-
tion than an equal change in a2 will produce, for the type of perturbation
of interest. In this situation the greater control variable perturbation
will tend to appear in al rather than a2. The tcotal perturbation in the
first control variable over the entire descent will therefore always tend
to be greater than the total perturbation in the second control variable,
provided al remains the more powerful of the two control variables, no
matter how many steps in the descent have been taken. Now, the total

required perturbation in the control variables during convergence from the
"nominal trajectory to the optAmum trajectory is purely a function of the
particular problem under consideration and the nominal path chosen. There
is no reason for supposing the total perturbation required in the powerful

control variable to be either greater than or less than that of the less
powerful one. It follows that when the steepest descent process is pre-
sented with a situation in wbich the converse is true, i.e., the weaker
control variable requires the greatest total perturbation, tt-re will of
necessity be a high risk of false convergence.

Pal"

We can make this argument more specific. Let us create a measure
of the total perturbation required during convergence from the chosen
nominal to the optimal solution for each control variable. For our pre-
sent purpose this can be achieved by separately integrating the absolute
value of the perturbation required along the trajectory, i.e.,

P. Aa.i dt (148)
0

,where

Ai = ioptim- aunominal (149)

The total perturbation achieved by the Steepest-Descent Method Q'
after C descents can be expressed in the form

=fT C
AP (C) 6a ij(t) dt. (150)

ii •!to J=l

Hee_ f e dt." th nr ib n th
Here 6aij(t) is the perturbation of the control variable the
descent at time t. Now suppose that the r control variable perturba-
tions are consistently greater than the sth, by some order of magnitude
P, so that

6a (t) O(P) 6a (t) (151)
rj sj
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Inverting this

6a sj (t) = O(-P) rj (t) (152)

On substituting eq. (152) into eq. (150), we obtain

=f fcJ sj(t) ,dt 0(-P) 6a(t) dtf0 J=l to J=l rj

S~or

- T C
APs(C) O(-P) 6Cc) jIt) dt (153)

ft j=l

b. Monotonic Descents

Suppose i, limit ourselves to consideration of the case in which
the successive control variable perturbations at any instant are monotonic
as the number of descents increases. We see from eq. (153) that the total
change in the sth control variable will always be P orders of magnitude
less than that in the rth control variable, no mabter how many descents
are made. Ir this case, we can dispense witn the inequality in eq. (1W3).

S (C) 0(-P) dt(154)
Jt j=l

The same remarks are true of eq. (150). On substituting eq. (150) with i =
r into (154) we obtain

= () (-) r(C) (155)

That is, the total change in the sth control variable after C descents

depends only on the cihange in the more powerful control variable and the
ratio of their powers. In such a case, once the constraints are satisf-ed,
the rth control variable will approach its final history with regularly
diminishing steps. The final history of the rth control variable may well

I be near optimum. The sth control variable history will of necessity be
M p•e -turl'ed by smaller amounts on each successive descent during this period

until it finally approaches its limiting value of APs(•). It follows from
eq. (155) that
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In general we will have no assurance that either

r r

or

If the original total perturbation required in the sth control
variable, APs, is P orders of magnitude less than that required in the
rth control variable, as it might be if we had previous knowledge of the
optimum history of the control variable, we would tend to obtain conver-
gence to at least one order of magnitude in the weaker (sth) control
variable, provided the rth cont"-'1 variable had converged (i.e., that eq.
(157) is satisfied) and had not -aen the object of false convergence also.

If, on the other hand, the total perturbation required in the s
control variable had been Q orders of magnitude greater than that of the
"rth control variable, ue would have

AP O(Q) AP (159)
s r

Combining with eqs. (157) and (158) we obtain,

s) = 0(-P) = O(-(P+Q) AP

thIf the mean perturbation obtained in the s control variable
history after the descent is Acs, and that required for convergence is
Aass we see that,

Aci

s 0(P+Q)

Now problems in which the control variable powers are in a ratio
of lO3:1 are not uncommon in trajectory optimization. It is also fairly
common to create a nominal trajectory in which the weaker control variable
has a ten times greater total required perturbation than the more powerful
one. In such a case we see from eq. (161) that when convergence is com-

. pleted the weaker control variable may b. practically unperturbed from the
nominal history.
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In practice the successive descents need not be monotonic. It is
therefore possible for the weaker control variable to increase its total
perturbation while the more powerful control variable oscillates. However,
it seems reasonable to assume that the descent is "almost monotonic." In
this sense the above analysis is "almost correct," and hence provides at
least a qualitative insight into the general behavior of the steepest des-
cent process with multiple control variables. It should also be noted that

k . the arguments of this section hinge on the porsistence of unequal control
variable powers. Discussion of this point will be deferred until the end
of Subsection c, where a more precise definition of what we mean by control

,--i power will have been presented.

The possibility of failing to converge to the desired end con-
straints is somewhat more remote than that of failing to converge the
payoff function. The dominant control variables for the payoff function
are very often the dominant control variables for the constraints and
hence will continae to be perturbed until the constraints are achieved.
In addition, the control variables usually need not be optimized to achieve!• the end constraints. In any case failure to achieve the end constraints is

immediately obvious, whereas the only reliable method of checking the payoff
NI function convergence is to obtain the same result from as different and

widely removed a nominal as possible. Accordingly the remainder of this
section is devoted to the study of false payoff function convergence and
methods of inhibiting this phenomenon by the use of weighting functions.

...... c. Control Variable Power

4 •• Previously in this section the concept of control variable power
has been used; specifically this is a measure of the ability of a control
variable to influence the final value of the payoff function.

It may be seen from eq. (4l) of Section II that the change in the
payoff function is given by

s r.(

dO (A~) 6k + ~j A)'G 6a~d 5  12

Suppose at time t' we create a pulse, i.e., a Dirac Delta Function,
of unit magnitude in each of the control variables. The change in 0 pro-
duced by these pulses will be,

A6(d) = Aý(t') G(t') {11 (163)

where {1} is a unit column matrix. The elements of the row matrix XAG
indicate the effect of separate pulses in each of the control variables.
These elements will be referred to as the instantaneous payoff function
sensitivities, sOP
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* s (t) = Xa-~(t) G(t) (

These quantities measure the power of a control variable with respect to
the payoff function, provided we are not concerned witi• terminal con-
straint changes. The instantaneous payoff function sensitivities, (o(t),
are intimately connected w.Lth the optimum control variable perturbations.
In the case of no terminal constraints, we see from eq. (65) that the
optimum control variable perturbation is,

- DP (165)
6=W G'

Substituting eq. (164) into eq. (165) we obtain

iis

+ W ; *m (166)

That is, the optimum perturbation varies directly with the instantaneous
sensitivities and the inverse weighting matrix. If the problem being in-
vestigated involves terminal constraints, we see fror eqs. (65 and (164)
that,

6a +W-1(s ' G'

,A - a p) i4 p

2 - dip'DP - p'(167)

IIp ii IIi,

ii+ W-1 G', d*

These results suggest an approach to the problem of false conver-
gence. We know that the problem is due to small perturbations in the weak
control variables; therefore we may use an inverse weighting matrix based
on the control variable sensitivities to accentuate the weaker control
variables. Effectively we will be changing the basis of the optimization
from that perturbation having the greatest change in 0 for a given total
perturbation magnitude to that perturbation having the greatest change in
4 assuming all control variables are equally important, and must therefore
be perturbed by a reasonable amount.
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we are primarily interested in control variable perturbations which im-

the constraints undergo prescribed changes with the minimum control
variable perturbation possible. From eq. (167) this is seen to be when

2 -1 d1 (168)-- (DP) 1  = d• I

with a corresponding mode shape of

6 G I**-' dip. (169)

The second mode considered is one in which the payoff function is improved
while holding the terminal constraints constant. From eq. (167) this mode
is given by

6 2 =+W (s -G'I X P1 I J*

71 DP 2  (170)
2

which may be written in the form

DP 2

2 + w- (s- s) (171)

1<.where

s' G'X IX -1 I (172)

Substituting pulse variations of this second type into eq. (162) and using
eq. (164), we obtain
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(173

A 2

a a~b - - - -----

i-i II I

s mu4 - s0 - (s(173)

Subtittin eq (14) nt eq.(17)w obtin _

P_=(175DPso•11 4I,

Weiee romeq (15) ha weweip Ovetepyf ucin

whcontrol variable pertron atiany instantaneous sensitivities, areI| I ndefined D y,

Susiuigeqs. (166) andt(75 enable71uswtobetabishrtoamtoso

;i ,=a* (175)

0 I0

chooingWe see from eq. (175) that when we improve the payoff function,
while at the same time leaving the terminal constraints unaltered, the
control variable perturbations at any point will vary directly as the
product of the inverse weighting matrix and the mixed sensitivity matrix.

F e Eqs. (166) and (175) enable us to establish rational methods of
parchoosing weighting functions to ensure payoff function convergence. If we
culimit ourselves to diagonal weighting matrices, we see that to ensure rea-
sonable perturbations in all the control variables, we need only increase
those diagonal elements of W-1 corresponding to the weaker control vari-
ab lements, or decrease those corresponding to the powerful elements.
Further, we can use the elements of st or so,* to decide in which class a

particular control variable belongs at any instant. End point convergence

could be improved by basing W-1 on GdIt •, eq. (169). To date, this has not
been necessary.

By integrating the absolute value of the instantaneous sensitivities
over the whole trajectory, we can obtain a measure of the total control
variable power. If the terminal constraint variations are ignored

S f Tt sos dt .(176)

a o
0

If the terminal constraint variations are held to zero
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S s dt .(177)

The elements of these column matrices will be referred to as the
integrated payoff function sensitivities.

The integrated payoff function sensitivities based on eq. (177)
should approach zero at the optimum; those based on eq. (176) do not of

necessi 'ty approach zero. Either form, in its own way, serves to measure

R the overall ability of a control variable to affect the payoff function

I•and is therefore a measure of the control variable power previously defined

in Subsection b.

If we had perfect numerical accuracy in the steepest descent

process, the control variable histories would continae to be perturbed

until such time as all the control variable powers, as measured by integrated
payoff sensitivities based on eq. (177) were zero. In practice this condi-

tion is practically impossible to achieve; in fact it is o,'ten difficult to

reduce these control variable powers by more than an order of magnitude
I I• when the weighting function is absent. This then is the basic reason forI the weighting function matrix, for without one we are in the situation

.•i •Idescribed in Subsection b and a high risk of failure to converge the
I I weaker control variables is present unless foreknowledge of the required
•i~i• i•I total perturbations Mi is available.gnrlyakoweg etr

IIt *will gnrlybe impossible to obtain the desired totalpetr
atn Ai directly, for to do this would require a ko d of the

•i ioptimum control variable history. In lieu of this knowledge we may make
•II I•the assumption that the APJi all have the same order of magnitude.

i I; Reasonable convergence can then be assured by choosing weighting

I I•matrices based on this assumption. Several such weighting matrices based

I on the payoff function sensitivities will be described in the remainder of

S~this section; to date only diagonal matrices have been utilized in this
SIilimanner.

!!_;

ii d. Weighting Functions Based on Integrated Sensitivity

Suppose we ch~oose a diagonal weighting matrix in the form,

i Y,

~S

f A (178)

Wil = ii + ii S

so

Twhere M s the number of control variables.
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If we have equally powerful. control variables, the unit matrix is
obtained with A.. =B. = 1, for then

- *..,(179)

441

where S is a typical sensitivity. 11 -S'.

In the case of unequal sensitivities this form of the weighting
function will ensure that we have perturbations of similar orders of
magnitude in each of the control variables. For example, suppose we have

r control variables with S~ 0(R)

s ccntrol variables with S 0(S)

and t control variables witn S O(T)

then

y 5'5'O
54+

Integrating

f 6 a6c(t) dt- Sf-ý(11
ft IM + 1 M + l ~

Partitioning the matrix according to the power of the control variables andL
considering orders of magnitude we obtain
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so that the weaker control variables would be practically unperturbed in
each descent, provided we retain the assumption of R >> S,T. On summing
over the entire descent, it follows that the total perturbation in the
weak contr l variables will be negligible compared to those in the powerful
control variables.

Weighting matrices based on the integrated instantaneous payoff
function sensitivities SO act in a similar manner by emphasizing the first
term of6a 2 (eq. 171), instead of the complete expression. It is difficult
to arrive at a quantitative result similar to that of eqs. (184) and (186)
for this type of weighting matrix. For the present it must suffice to men-
tion that several cases of false convergence in the weaker contrr" variables
have been eliminated by the use of this type of weighting function.

e. Weighting Function Based on Instantaneous Sensitivity

Suppose we have a single control variable ca,, and that the power
of this control variable varies drastically along the trajectory. In re-
gion A of the trajectory let the power of al be several orders of magnitude
greater than in region B. The greater perturbation will tend to appear in
region A and, should the discrepancy in control power persist throughout the
steepest descent convergence, the greater total perturbation will always
occur in region A. However, the total perturbation required in regions A
and B are functions of the nominal control variable histories created over
the region of interest and the problem at hand. We are therefore once more
in a position where false convergence can occur.

To be more specific let region A be that region in which to < t - t'
and region B be that region in which t' hý t >- T. Let the power of the con-
trol variable in region A be O(P) greater than that in region B. In the
absence of a weighting function we know that the perturbation mode which
improves the payoff function directly is proportional to the mixed sensi-
tivities payoff function sensitivity, sO . We can therefore write

6a Wtctlt O (P) 6a (t)t, (187)

thwhere 6aj(t) is the perturbation at any point in the j cycle of the
descent.

Following the approach of Subsection c we can use a W matrix which
will tend to equalize these perturbations. Suppose we define W(t) by

* ~~(188) -~
i i = 1 +s¢ t

+ W max

,!,
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whee smayuis the largest value of sO along the trajdigescetory (In pathice
i whermyue the max imumelrgs value oz fro, ln hetaetr (npatc

cae wey ushal thae mxmmaleosfrm the preceding descent). In this
• case we shall have

t (a s€ Wt) (189)•(t)~ +so (t) #"

Let sý be O(P) and let sý be O(Q).
a* max c min

"At the point of greatest power we shall have

6a(t)max (2)(0(P)) (190)

and at the point of weakest power

So(P)]
a(t)mn~ + OL O(Q) = O(Q) + O(P) (191)

If P >> Q we therefore obtain

max (192)

min

Without the weighting function, we obtain

6P-

0(P-Q) .(193)6 min

We would therefore be limited to extremely small control variable pertur-
bations in region A, unless a weighting function is used to alleviate the
discrepancy in control variable power in the two regions.

f. Combined Weighting Functions

In general we may have several control variables whose individual
sensitivities vary drastically, both with respect to the independent
variable and with regard to each other at any instant. The variation with

the independent variable may be modulated by using an inverse W matrix which
will tend to equalize the total sensitivity, i.e., the sum of the individual
control variable sensitivities, at each point along the trajectory. A time
varying term of the form
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Aij + M s4194

Swill achieve this effect.

*H., The difference in sensitivity between the control variables at
4, any instant may be equalized by utilizing a term similar to eq. (178) withit~e instantaneous sensitivities sac replacing the integrated sensitivities 4

+. D.. j-l

1 1,

mA.

Ci ombining eqs. (19) and (195, and adjusting the matrix so *tha
*E- with eqiaally powerful control variaoles throughout the trajectory, the unittimatrix is obtained with Aii = Bi - Cii = Dii = 1, the inverse weighting 'm

S~matrix becomes

NN

iAi w+ iiit max (194)_

i�W J=1(M + i)

The method of steepest descent is a method by which certain information

3.y Wightint matries Bqasied on Changesing ther Ses-itivities .(7)wt

3e (i.e., the sensitivities) is computed along a nominal trajectory and then

S~used in the best possible manner to perturb the control variables in order

SIa

iM

- -"*- - - - - - - -

- (1,9')
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Sto improve the trajectory. The only information c -piited is the first

order effects and for this reason it is inadequate in certai•n very impor-

tant respects. The sensitivities accurately predict the rate oZ change

of the various constraint and payoff functions -with respect to the control

variables. The problem is that as soon as the control variables have been

perturbed the sensitivities change. If one wanted to obtain the most effect
from a given perturbation this information regarding the rate of change of
the sensitivities would be very useful.

SIt L. ±,,•tually because of the lack of any information pertaining to

•[i•the rate of change of the sensitivities that it is necessary to introduce
-- •[!weighting matrices. Thus it would seem that if one were going to compute

the weighting matrices along a trajectory it would be necessary to base
S~them on second or higher order effects. It turns out that it is not very

easy to do this.

The philosophy of this option may be easily understood by considering
a simple two-dimensional case. Suppose one wanted to maximize the func-

i tion f(x,y) by the method of steepest descent. Suppose the sensitivities
S~computed for the first five iterations axe as given in Figure 14. Flom an

inspection of this table it would seem clear that x is getting perturbed too
_• much and y is not getting perturbed enough. One would expect the conver-

gence to proceed at a faster rate if the elemen~t in the inverse weighting

matrix corresponding to x were decreased and the one corresponding to y

were increased.

S~~Cyc lefxy

,it~

2 -90 95
ti o t t eo 3 85 92

tant ~ ~ ~ ~~igr respectb.eThe sensitivities acrtl rdc h aeoLcag
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One method of automatically computing weighting matrices would be to
begin with a nominal set of values on cycle 1 and then modify these from
cycle to cycle. This is the method used by this option. In the above ex-
ample the optimum occurs when fx = 0 and fy = 0. Thus, by comparing the
sensitivities computed for cycle 2 with those of cycle 1, it appears that
x was perturbed (190/100) times as far as it should have been. By the same
reasoning y was pertarbed (5/100) times as far as it should have been. If
the respective elements of the inverse weighting matrices were multiplied
by the inverse of these ratios, one would expect an improvement on the next
erc le.

The above scheme has the disadvantage of correcting the matrices a
cycle late. That is, the modification described would have helped on
the previous cycle; but what is going to happen on the next cycle is
unknown at the time the modification is being made. On most problems the
same weighting matrix will suffice for several cycles. For this reason it
would seem reasonable that if the amount of change allowed on a given cycle
were limited, the elements of the matrices would tend toward good values.

The trajectory optimization program not only has a payoff but con-
straints as well. On each cycle, however, CTLS2 defines a function, PF,
and bases the step size on this one function. The theory is that this is
a measure cf what the program is trying to do on that cycle. If this is
the criterion to be used, the best possible control variable perturbation
would be the one that would reduce all of the sensitivities with respect to
PF to zero.

--- teesitth
- Let SPFi and SpFi be the sensitivities of the i control variable with

respect to PF on the N + ist and the Nth cycle respectively. Then this
option sets

ii i i -1/2
• -- m _-" -" = m 1 p F .

w .... Max Mi 5w~1i= Mx [, M ~ s F~) ~ /2, (197)

;i ii i-i -'--iis

where Wii and W7j are the ii elements of weighting matrix on the N + lst
and the Nth cycle respectively. The elements of the U and W matrices are
both computed in the same manner, the W matrix is averaged over each stage
however. The limits on the changes allowed are to insure that everything

will be well-behaved.
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SECTION V

POINT MASS TRAJECTORY ANALYSIS

1. Basic State Variables

In Section II we derived a successive approximation scheme for obtaining
optimum trajectories generated by a set of first order differential equations.
The analysis is quite general and holds for trajectories generated by any setof first order differential equations. The object of this section will be

to specialize the results of Section II to the poi.nt mass vehicle trajectory
problem. This will be accomplished when a suitable set of state variables,
together with their derivatives, the control variables, and the forces
associated with the control variables, have been specified. First, we will
choose a coordinate system and utilize Newton's law-, in this system to define
the vehicle's motion.

Several suitable coordinate systems are available for point mass trajec-
tory computations. The basic set of coordinates used in the present analysis
will be a rectangular set rotating with the earth, (Xe, Ye, Ze). This coordi-
nate system is illustrated in Figure 15.

W.

Greenwich Position of vehicle in
Meridian /inertial space at t toatt~t • I'-/ - 0A",<' \

__ _ LO "Xe

Ymeta /)inertial

Stto)

~Xinertial

Yee
• Ze, Zinertial

Figure 15 - Basic Coordinate System
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l The Xe and ge axes lie in the equatorial plane, the positive Xe axis

• being initially chosen as the itersection of this plane with the vehicle

I longitudinal plane at t = to* Ye is 9Q0 to the west of Xe. and Ze is
S~positive through the South Pole. Let us denote the radius vector from the
S~center of the earth to the point mass vehicle by R, so that its magnitude

•" is given by,

,-• The angle between R and the North Pole is given by

where ¢I, is the latitude 'of the vehicle. As a result of the earth's rota-
tion an observer in the (Xe, Ye, Ze) system would detect an apparent motion
of the point mass even if it were at rest in inertial space. In time At the
apparent displacement of such a vehicle would be

6 Rapparent = R sin 4'. •p At(00

to the west. In vector notation,

cSRapparent =RxwpAt = -Wap x RAt (201)

This apparent displacement is independent of the vehicle's motion and
exists whether or not the vehicle is at rest in inertial space. In general
Then we can say that, to an observer in the rotating coordinate system,

(6R)e =(6R)inertial + (iSR)apparent (202)

.'.(R)inertial =(6R) e + wpxRAt(23

Dividing eq. (203) by AT and taking the limit, we see that

(dR = dRt)e mR(0a
dt inertial dt +wx

or

Vinetia = Ve + WpxR(24)

The vector R in eq. (20lha) could equally well be taken as any vector;
the arguments of eqs. (198) to (20i4) would still hold. Therefore, in general,
for any vector quantity we have the operational equality

ia/ nertial

4', 69

2.'

1'ý,'Kkf IX-.

Th ean Y xslei-h qaoil lntepstv ai

4- _ __ _ _ __ _ _ _ _ eben intal hsna*h tretono hspaewt h eil



~gp~ -- •; "• • •• • • • • •.•., ••

Applying eq. (205) to eq. (204b), we find that the inertial acceler-
ation is given by

at inertial +(e p d(( e+ tPXR)

d2-e• + 2cppx (E)XR (206)

Now Newton's Law applies in inertial space, so that we can finally
express the equations of motion in the rotating system as

F= d2R + 2•wpx + +pxw xR (207)
m dt 2e e

where F is the total force acting on the vehicle. We can express eq. (207)
in component form by using the relationships

R = Xe.i + Ye.j + Ze.k (208a)

S= -w .k (208b)Pp

F F .i . k (20 8 c)

where i, J, and k are unit vectors aligned along the Xe, Ye, and Ze axes,
respectively. Equating components on either side of eq. (207), we obtain

Fe •.

=_ + 2 wpyeZW Xe (209a)
m A

Fy
Ye Ye-2wX ~wp2 ye (209b)

Fz

me e (209c)

These equations are not in a suitable form for the steepest descent
analysis of Section II to be applied, for they are not in first order form.
The transformation of eqs. (209) into first order form is immediately accom-
plished, however, if we define the following quantities as state variables:
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Xe
Yeix = Ze (210)

~Ue
SVe

We

where

dR
Ve= e ue. i + ve.-J + we.k (211)e t e

With this set of state variables we obtain from eq . (209) and (211),
the following expressions for the state variable derivatives:

= ue (212a)

Yve (212b)

Ze = We (212c)

-Fx2

Ue = x - 2 pv + P2Xe (212d)
m

"ve Ye + 2 WpUe + w 2 ge (212e)
m

We ze (212f)
m

These equations are in the same form as eq. (3) provided the total
force is a function of the state variables, a set of control variables, and
stage time. When the mass is variable, it too must be introduced as a state
variable. Any expression for the rate of change of mass of the form

m=m(Xn(t), ýIm(t), t) (1g

may be used in the analysis of Section II. The above state variables,
Xe, Ye, Ze, Ue, Ve, We, and m will be referred to as the basic state vari-
ables. In certain problems it becomes necessary to specify additional state
variables; these will be treated latex.

2. Control Variables

The total force acting on the vehicle has three distinct sources:
first, aerodynamic force as a result of vehicle surfaces and atmosphere
interaction; second, gravitational force as a result of vehicle and plane-
tary mass interaction; and finally, thrust forces from the vehicle propulsion
system.
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Before aerodynamic forces can be computed, the atmospheric properties,
vehicle velocity relative to the atmosphere, and vehicle attitude must be
specified. Atmospheric properties are usually specified as a function of
altitude which in turn is a function of the state variables Xe, Ye, and Ze*
Vehicle velocity relative to the atmosphere is also a function of the state
variables, for ue, Ve, and we are the vehicle velocity components in a rota-
ting system. The first and second factors determining aerodynamic forces
are, therefore, functions of the basic state variables of Subsection 1.

The remaining factor entering into aerodynamic force determination,
"the vehicle attitude, is clearly not a function of the basic state variables.
For, given the vehicle's position and velocity, we are still quite free to
specify its angular orientation in space. The angles which determine vehicle
orientation may, therefore, be utilized as control variables by which aero-
dynamic forces may be modulated. Any set of three independent angles could
be utilized for this purpose, but convention demands that we use the vehicle
angle of attack and angle of sideslip to orient the vehicle reference axis
with respect to the velocity vector. Angle of attack, (a), is the angle be-
tween the velocity vector and the vehicle reference when viewed in the
vehicle side elevation. That is, defining a rectangular coordinate system

N x, y, z with x along the vehicle reference axis, positive forward, y per-
pendicular to the vehicle plane of symmetry, positive to starboard, and z
completing a right hand system we are considering a view normal to the x-z
plane. If u, v, w are the components of the vehicle velocity with respect
to the atmosphere in this body axis system, we can write

U tan-1 (, ) (213)

x

*a V

Figure 16 - Angle of Attack

Sideslip angle (a) is the angle between the velocity vector and the
reference axis when looking down on the vehicle planform, that is along the
z axis. In this case,

8 =tan- (u*) (21h)
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Figure 17 - Sideslip Angle .

Angle of attack and sideslip completely define the attitude of the
vehicle with respect to the velocity vector. The third angle required to i t
establish vehicle orientation in space is a rotation about the velocity
vector. T'his last angle, bank angle (BA), will be taken as zero when the
vehicle plane of symmetry is vertical and the vehicle upright. Positive bank
angle will be taken as a positive rotation about the velocity vector.

Vertical plane containing velocity

Vehicle plane of symmetry... I

BA is the angle between the -t ,

aircraft z axis and the
vertical when viewed along
the velocity vector y'

4+ +--+. .ck u • ' .+J

Figure 18 - Bank Angle
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• With the above set of angles to describe vehicle attitude, the velocity
known and a given atmosphere, the aerodynamic forces are completely speci-

Afied.Returning to the second source of vehicle force, gravitation; we know

from Newtonts laws that this is merely a function of position and mass. It
is, therefore, completely defined in terms of the state variables and hence

! introduces no new control variable.

The final source of vehicle force, thrust from the propulsion system,
involves the atmospheric properties, either due to the atmospheric pressure

degrading the thrust, or by virtue of the air used in the combustion process
whieh creates thrust. The propulsion unit efficiency may be affected bythe Mach number and hence velocity, so that thrust forces depend on the basic

S~state variables of position and velocity in a similar manner to aerodynamic
forces. If the propulsion system has a fixed orientation within the vehicle

the control variables introduced to handle aerodynamic forces will suffice

to handle thrust forces. It may be, however, that the propulsion unit has
a var-iable orientation within the vehicle. In this case additional control
variables to describe the relative position of the propulsion unit with
respect to the vehicle are required. With vehicle attitude already specified

S•! by a, • and BA, two additional angles are sufficient to orient the thrust.
i i These may conveniently be taken a• the cone angle from the reference axis,

I •T' and the inclination about the reference axis, 4'T" This latter angle will

be measured positively about the reference axis and be zero when the thrust
force is perpendicular to the port side of the vehicle plane of symmetry.

-- ,,

I!

~z

Figure 19 -Thrust Angles

One other control variable for thrust remains to be specified; this i;s
the throttle setting, N, which serves to determine thie propulsion unit power

knowng aon variable thrust engine.

3. Coordinate Transformation

Certain coordinate systems are more convenient for input tng data and

computing forces than is the earth referenced, Xe, Ye' Ze system. The

coordinate systems and the related transformations are discussed below.
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The components of the planet-referenced acceleration are integrated to -

i• i obtain the planet-referenced velocity components X~e-Ye-Ze. Vehicle positions
•i " in this coordinate system are determined by integration of these velocities.S~The position of the missile in a planet-referenced spherical coordinate
'! ! system will be determined. The spherical coordinates are longitude, geo-centric latitude, and distance from the center of the planet. The angle "C"
,•' D•'(see Figure (20)) represents the change in longitude of the vehicle and may
•--' --- •be written:* I

i ! The angle C is related to the vehicle displacement by the expression:

i i C = Tan-1  (Ye\

i • Local-geocentricX

Z, Ze

I Figure 20 - Relation between Local-Geocentric, Inertial, and

The com Earth-Referenced Coordinates for Point-Mass ProblemsI To describe the motion of the "body relative to the planet, a local-
geocentric-horizon coordinate system is employed. The Zg-aXis of this veoctis
system is along a radial line which passes through the center of gravity ofcthe body and is positive toward the center of the planet. The X g-axis of

•,•! •this system is norma2 to the Zg-aXis, and is positive northward; and yg
forms a righthanded syseem. Figure (20) shows the relation of this coordi-

,•i •nate system to the other systemns assumed. Thne direction cosines relating theorientation of this system to XeYe-vhiZe space will now be developed.

iiI '
e)Ta n Y ( 2 1 6 )
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Z CTo locate the Xg-Yg-Zg axes with
1800°+• respect to the Xe-Ye-Ze axes, first

rotate about Ze by an angle (1800 + C)
and then rotate about Yg through the

Ye •- • angle (9 0 -0L). The first rotation
defines the intermediate coordinate

Y y system shown in Figure (21). The trans-
g formation is given by:

Xe

Figure 21 - Intermediate Coordinate System Transformation
from Earth Referenced to Local-Geocentric Coordinates

Cos (1800 + c) Sin (1800 + C) 0 1Xe

Y 1g -Sin (1800 + 0) Cos (1800 + C) 0 ye (217)

J-z C)0 1 11r
e Lel

or

W x -Cos C -Sin C 0 ix
e

gly Sin C -Cos C 0 1

Ze 0 1  el

The second rotation is shown in Figure (22). The transformation matrix for
the second rotation is given by;

~i t

lXg Cos(Q 0 -Sin (9Q00-~)

l~ = 0 1 0 lyg ~* g

iZg9 Sin (900- 0 Cos (9oo0 4Zel

or

iXg Sin 4L 0 -Cos gL ix'

yg= 0 1 0 ýyg (218) Zg

z
iZ dCs eL 0 Sin eL IlZe
I CFigure 22 - Final Rotation in Transformation from

Earth-Referenced to Local-Geocentric Coordinates
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In this analysis, a positive rotation is defined in the same sense as
that adopted for vector cross products in a right=handed system. That is,

* a positive rotation about the z-axis occurs when the x-axis rotates into
the y-axis; positive rotation about the x-axis when the y-axis rotates
into the z-axis; and positive rotation about the y-axis when the z-axis
rotates into the x-axis. The intermediate coordinate system X'-Yg-Ze will
be eliminated according to the methods of successive rotation, Reference (6).
The complete transformation is given by;

lXg Sin OL 0 -Cos OL -Cos C -Sin C 0 X:'
9 lg

9 C--s O 01 l•Zel

iwhich can be reduced to the single transformation ma'rix

lx g -Sin 4 L Cos C -Sin OL Sin C -Cos ýL ;-Xe

ly = Sin C -Cos C 0 iY (220)
gly

Si~g -Cos OL Cos C -Cos L Sin C Sin "L IZeP

The direction cosines will be defined as follows:

g 'l il kI

Siyg = i 2  J2 k2  I~e (221)

iZg i3 J3  k3 1Ze

The planet reference velocity given in the local-geocentric coordinate
directions is given by:

Xg il J1  kI Xe

Yg = i2 J2 k2  Ye (222)

. Vg • 2 + ý2 + z•2•
V g2 g g'2* (223)

The flight path angles are computed by

| = tan 1  (224a)
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M where a is the heading angle and y is the flight path angle.

b. The Wind Axis Coordinates

The aerodynamic and thrust forces for the point-mass problem will

equations of motion are solved in the XeYe-Ze coordinates, the wind-axis

components of fo'ce must be resolved into the components of this system.

If Caere are winds, l9efined by atmosphere velocity components along the
iccal geocentric axes, t'- vehicle velocity relative to the atmosphere is
tl e vector difference of the vehicle geocentric velocity and the wind veloc-
.Ity. The wind axis system is then determined by the vehicle airspeed, VA,
end the flight path angles relative to the atmosphere, YA and G!,, If the
wind velocity is zero, VA.= Vgq YA =Y and OA~ If there is a wind with
components X ,Yand Z

gw g9W gw

VA. (kg .. 9w)+( - w9 1 (225a)

YA sin L- (Xg 9 !"A] (225b)

tan (i w i i J (225c)

The forces will first be resolved from the wind axes to the loca?--
geocentric coordinates. The wind axes are defined relative to the 1(,,
geocentric axes by three angles: heading, aA;flight path attitude, yA; and
bank angle, BA.

I ~A XA

YgY

Yg 'BA A ,

ili A Zg Z

Figure 2." - Relationship between Local-Geocentric Axes and Wind Axes

78

__sic_._......... =___ _ _ _ _ _ _

_______________________777____- -"



Thý transformations are:

co aAsnca
x Y' -. sinaA cos aA 0 Y (22 6 a)

.z 0 1 g

XA CO A -sin A XI

2' csinYA 0 COYA Z

XA 1 0 0 XA

YBcos BA sin BA Y' --6c)

ZA 0 -sin BA cos BA I Z''

Z,' ZAJ
The complete transformation then is: (226d)

XA csYAcos 0 A cos Y'A5 1 ' A siYA g

YA -sin uAcos BA cos aAcos BA cos yAsin BA Yg
+ iny~os Asif BA + sin y sin y in BA

ZA BAiCn aAsin BA -cos us BACsY A cos BA Zg
+ sin YAcOs GAcos BA + sin yesin uAcos BA

wihwill be defined as

r2 s2 to y(227)

r 3  s3  t3  Z9
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U•ne resolution of forces from wind axes to local geocentric becoues:

FYg r r2 rB FA

Fy g 1 sI s2 s3 FYA

FZg tI t t3 EzA (228)

For the rotating-planet, Cie local geocentric components must be resolved
to components in the X -Ye-Ze system. The required direction cosines are
given by Equation (222)

?I F i * i~•<¶ i 444

FXe i1 i2 i3 ..Fg

FY e = J J2 J3 i Fyg9 (229)

' Fze k, k2 k FZg

The combined transformation from wind axes to local geocentric will be
defined as a single matrix

FXe l 02 03 FXA mx

FYe =Pl P2 P3 FYA + mgye(20

FZe ql q2 q3 F•A mgze

c. Body-Axis Coordinates

The origin of this system is at the center of gravity of the aircraft
with the x-axis along the geometric longitudinal axis of the body. The posi-

tive direction of the x-axis is from the center of gravity to the f ont of
thebod. Te -axis is positive to the right extending from the center of

the bodyThy_

gravity in a water-line plane. The z-axis forms a right-handed orthogonal
system. To permit the use of body (x, y, Z) axes aerodynamic data and to con-
vert the body axes components of thrust to the wind axes system, a coordi-

nate transformation must be made. The coordinate transformation shown in
Figure 24 is first through the angle of attack, a, and then through an auxil-i iary angle, B'. The transformation is:

80
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§w m w1

'~1 Z VA and XAt

Ux

tan p'= - CoSa=tanPCOSa w (231)aU X] Z' z

Q/COSr

~A X'

XA

Figure 24 - Relationship between Body Axes and Wind Axes
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f cos a 0 sinca x

y = 0 1 0 y

Z -sinla 0 COSU a Z

XA coB 81 sin 8' 0

=A -sin 01 cos 8' 0 yl

ZA 0 0 1z

= cos8 cos a sin 81 cos a' sinla x,

-sin 8' cos a cos 8' -sin a8' sin cL y (232)

-sinlca 0 COS a z

which is defined as the u-v-w direction cosines

XA 111 u2 u13 X

= 1 V 2 3 y (233a)

5U-ZA wi w2  w3

I:>-CD 111 u2 113 -CA

1$ C = 1  11 11 Cy(233b)

-CL1 w w2  w3  C
w.il

The relationship between body and wind-axes aerodynamic coefficients is then
established, noting the negative directions of the coefficients relative tc-
the axes system.

d. Inertial Coordinates

The inertial coordinates system coincides with the earth reference
Xe-Ye-Ze system at time zero. At a later time they differ by the rotation
of the earth wpt. The transformation between inertial v'elocities and planet
referenced velocities is derived as follows:
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Let R be the displacement of the point-mass, (see Figure 20).

In inertial coordinates N

R Xlx +Yly+ Zlz (23)4)

and

V R Xlx + +l

Tn planet-referenced coordinates

B=XelXe +ely+e lZ

However, duje to the rotation of the Xe, Ye, Ze coordinate system, the
velocity is

6t

where

6t

The plan~et's rotati.on is about the Z-axis which is also the Ze-axis. There-

and the required croos product is:

lxe Ye 'Ze

xR 0 0 =w~ (yew)i Xpiy

Xe ~ e Ze

that

Xl~~Yy ZX (e w~el~ +(ve p upe)ly~ + (Zele (29

The relation between the unitt vectors in the inertial sy'sTem ttnd unit vect~rs
in the planet referenced systemi are obtained by a single rotation about the
-axis.
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i ~ The transformation matrix is:

z & Tze Cos wpt -Sin wpt 0 1X

1y Sin W t Cos Wpt 0 1y (24o)

ix- -

Ty Ie 1e 0 Z '

N IX
The transformation from planet-referenced velocities to inertial velocities

5

is made with the inverse of the matrix of eq. (240) and the component

R relations derived in eq. (239) :

X Cos wpt Sin rapt 0 Xe + wpYeT Y --Sin Spt Cos rpt 0 Ye 1e (241)

z 0 0 1 Ze

The components of inertial velocities are used to calculate the inertial speed

S of the body as:

V = /2 2 (242)
SEq. (242) is valid regardless of the inertial coordinate system involved.

e- Local-Geocentric to Geodetic Coor-dinates

Positions on the planet are specified in terms of geodetic latitude

and adtitude (for & given -longitude ) while the motion of the body is computed
2Mn a planetocentric syst-em which is independent of the surface. In the cen-

tral program, the figzht-path angle y and the heading angle a are calculated
-with respect to the local-geocentric coordinates. By definition YD and OD

"• -are angles measured with respect to the local geodetic. Although the maxi-

mmdifference that can exist between the two coordinate syst'3ms Is 11 minutes
S~of arc, it-may be desirable ta know YD and GD more accurately than is obtained

when measured from the local geaocentric.

(1) Latitude - It will be necessary to resolve the geocentric latitude
to geodetic latitude for an accurate determination of position. Figure (25)
presents the geometry required for describing the position of a point in a
meridian plane of an oblate spheroid.
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I I Figure 25 - Planet-Oblateness Effect on Latitude and Altitude

It is apparent from this figure that the most significant difference
between the geocentric referenced position and the geodetic position is the
distance A on the surface of the reference spheroid. The distance can be
defined by a knowledge of the angle *L' the geocentric latitude; CA the
geodetic latitude; the corresponding radii; and the distance O-U.

The relationship between the geocentric and geodetic latitude of a point
on the surface of a planet which is an oblate spheroid is obtained as follows:
The equation for the surface in a meridian plane is

:i •X2 z2
+2  + - (243)

2 2
ReR

The tangent of the geodetic latitude can be found by determining the negative
reciprocal of the slop. of a tangent to this ellipse. The expression for this
tangent is

Tan4) =- I -- B 2 Z (244)
g d(-z) 2

dX XB

'B

Note that ZB is a negative number in the northern hemisphere.
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The tangent of the geocentric latitude of point B is

Tan *L B(245)

Substituting eq. (245) into eq. (244) gives the required relation
2

IleTan Og Tan ýLg (246)

The expression for the radius of the planet at point B in terms of the
geocentric latitude of the point and the equatorial and polar radii is
obtained by the rectangular to polar coordinate transformation

-ZB =RýL Sin hg(247)
gg

XB R4L osL (248)
g g9

and, solving for R~ by substituting eqs. (247) and (248) into eq. (243),
give 4R Sn 2Lg e2 Cs

(249)

- (ReIRp)(tan /tan ýL) ]2sn L + C05

It may be seen from the Figure (25) that

or = -(250)

h sinýg OP sin L R4;g sin kg. (2511

Likewise

F7W =P1 _W (252)

h cos 0g -o ~LRL cs (253)

If eq. (251) is divided by eq. (253) and then the quotient is divided by
tan Lgthere resultsj
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or 
½

+[(Re2R 2 )/R 2  (254b)COS/ co2 4nTRL [Rig/OP
p COS SLf e Vgg

Finally if eq. (254b) is multiplied by (Rp sin )/(Re sin L)it follows that

g (255)

Re = R~-2] e si ýLg () ~A
(tan ýL, /ta-zi (_ RB sin'"~

Let

U=(R taA/e t L lB tan 4~
p ij (256)

(R tan 9g/Re tan

*Then it follows from eqs. (249) and (255) that.

U RoP] [U!/ U2 sin2  L 4y [1- (R /R 2 (257)B~ ecps
e

Pq, (257) is solved by an iterative schome.

Then

1 RU
* ane (258)

g Lx
p

(2) Geodetic Flight Path Angles -The flight-path and heading angles
corrected to t~ae local-geodetic latitude are computed by

A -z
Sin1 -v--- =Sin-J (259a)

since the magnitude of vector Vg is equal to the magnitude of vector Vg1 0

and 2 )

a i Sin-( 4 Ig+9~ L~ai i

2- 2
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4. Auxiliary Computations

In addition to the computations which can be made from the problem formu-
lation as presented in other sections, several other computed quantities are
optional calculations:

(a) planet - surface reference range, RD

(b) great - circle range, Rg

) (c) down and cross range, XD and YD

(d) theoretical burnout velocity, Vtheo

(e) velocity losses, Vp, VD and VML

a. Planet-Surface Referenced Range - The total distance traveled over
the surface of the planet is computed as the integrated surface range. If
the distance traveled by the vehicle over a given portion of the trajectory
is:

j~2
R = V dt (260)D j

tI

then the curvilinear planet surface referenced range is
2

RD = f L Vg Cos y dt (261)

tl

The flight-path angle, y, is referenced to local geocentric coordinates for
this computation.

W b. Great-Circle Range - The great-circle distance from the launch
point to the instantaneous vehicle position, Rg, may also be required.
Expressions for this distance are derived as follows:

SBy spherical trigonometry, (see Figure 26) (262)

RCos = Cos (90-4L)COs(90-Lo) + Sin(90-4L)Sin(90_.Lo) Cos(eL-eLo)

or simplifying

Cos R Sin Sin o + Cos ýL Cos Lo Cos (eL-eLo (263)

Therefore,

Rg = R' Cos- [Sin OL Sin Lo + Cos Cos 6Lo Cos (eL-eL0)] (264)
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Figure 26 - Great-Circle Range

However, since the planets are generally oblate spheroids, R' is not a con-
stant radius. An approximation may be obtained by averaging the planet's
radius at the launch point and at the vehicle's position. Therefore, define
the average radius, R', as W6

R' = RL + OLo (265)

2

and the surface-referenced great-circle range from the launch point to the

vehicle is- + (266)
RL + RLCoeLeo'

R =-Cos- Sin-L Sin + Cos L Cos Cos(OL OL)

2 LO

c. Down and Crcss Range

The down and cross range from the initial great circle can be determined.
The initial great circle is determined from the input quantities a ,L r
and OL (see Figure (27)), Then the cross range of a particular ?rajectory
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point is defined as the perpendicular distance from the point to the initial
great circle. The downrange is then the distance along the initial great
circle from the initial point to the point P at which the cross range is
measured. From thc spherical triangle, Figure (27), the great circle range
LF to the point F, is computed by eq. (266).

The right spherical trianle LPF is solved for the downrange, XD, and
the crossrange, YD"

(1Csin(i LF siXD =R' cos- ( Cos LF (267)% ~~os (sin-l(sin LF sin )

YD RI sin' (sin LF sin ~)(268)

where

=�a -i(269)

R' is defined by eq. (265)

NS

•---•Initial

great circle

Ox

OLo LI

LF Great circle range. Rg
from initial point L to
point F.

Figure 27 - Downrange and Crossrange Geometry
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: :Id. Theoretical Burnout Velocity and Losses - For trajectory and per-
formance optimization studies it is convenient to know the theoretical burn-
out velocity possible and the velocity losses due to gravity, aerodynamic
drag, and atmospheric back pressure upon the engine nozzle. These quanti-
ties may be computed as follows:

Theoretical Velocity.! j t2

Vth = TVAC
mhe t (270)

t1

Speed Loss Due to Gravity
2t

V = gzg Sin y dt (271)
gray 2 - zgvf

Speed Loss Due to Aerodynamic
Drag

/2
VD -t (272)

• i•Speed Loss Due to AtmosphereBack Pressure Upon the Engine Nozzle

I• t2f PA
= _ edt (273)

tl

Maneuvering Losses

t2 PA /

t Tvc (cos a - dt. (274)ML f \Imti

The resultant velocity V' is obtained by adding the components computed t..
the initial value Vg(tl), which should equal the initial Vg.

Vg' Vg(tl)+Vtheo + Vgrav + VD + Vp (275)

The maneuvering losses are valid only if A is zero for each engine.

IT
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S~e. Orbital Variables

S~(1) Introdut•tion

S ~Certain functions of use in orbital trajectory calculations
have been added to the point mass equations of motion used in the Steepest-
-Descent Optimization Program. These functions permit the sr~cification of

tev inal conditicns in inertial space when this is conveniez~t. A further
set of functions "-ill permit rendezvous calculations with a satellite in a
circular orbit Lbout a central planet.

(2) Orbital Variables

The orbital variable calculations commence immddiately after
the calculation of %rehicle inertial velocity. Flight path angles in iner-
tial space are computed from the expressions

Cri = tan-i w (276)
Xg

•--_ 71 = sin-' Z 
(277)

The inclination angle, i, is the angle between the plane containing the

i velocity vector and the center of the earth, and the equatorial plane.

-Z

e.Equatorial plane

Figure 28 - Orbital Plane Geometry
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Applying spherical trigonometry to Figure 28, we obtain the relationship

"cos i = cos 0L sin a (278)

Th ±.ference in longitude between the vehicle and the ascending node,
v, as given by

tan v = sin OL tan 0, (279)

The inertial longitude is given by

eI= eL - wpt (280)

and the inertial longitude of the ascending node by S

"= eT - V (281)

It is convenient to know the central angle,u, in the orbital plane. Measur-
ing from the ascending node, we obtain

tanu= tan OL (282)

(3) Satellite Position

The satellite considered is in a circular orbit about the
earth. Its orbital height, hs, is specified and remains constant. Position
in the orbit is computed from an initial central angle, OSo, by the expres-
sion

T ss =elso + Wst (283)

The satellite angular velocity is obtained from the satellite inertial
velocity, Vcs, where

(284)
i• ~ ~s- (Re hs)(2)

where Pg is the gravitational potential constant and Re the earth radius.
It should be noted that eq. (284) assumes a spherical earth, for the earth
radius is taken as constant and none of the gravitational harmonics are
included. Knowing Vcs, we immediately obtain

= VcS~(285)
TlRe+hs

The variables of this section and the preceding one provide enough informa-
tion to either rendezvous with, or terminate the trajectory in a specified
position relative to, the satellite.

F
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5. Vehicle Characteristics

The methods by which the aerodynamic, propulsive, and physical character-
istics of a vehicle are introduced into the computer program are presented in
this section. The form and preparation of these input data are discussed
together with methods by which stages and staging may be used to increase
the effective data storage area allotted to a description of the vehicle's
properties.

a. Aerodynamic Coefficients

(1) Form of Data Input

The primary objective of the aerodynamic data input subprogram is
to provide for a complete accounting of the various contributions to the
aerodynamic forces and moments regardless of the flight conditions of the
vehicle being considered. Two powerful techniques are available for use in
digital computer programs; (a) an n-dimensional table look-up and interpola-
tion and (b) an in-order polynomial function of n variables prepared byT
"curve fit" techniques. In the first method, the proper value for each term
is obtained by an interpolation in "n" dimensions where the number of dimen-
sions is taken to be the number of parameters to be varied independently
plus the dlependent variable. This method has the advantage of accurately
describiug even the most non-linear variations with a minimum of preparation
effort. The amount of storage space which must be allocated to such a
method, however, can achieve completely unreasonble proportions and may
require substantial computing time for the interpolation as the number of
dimensions are increased. The second method has essentially the opposite
characteristics; that is, a large amount of data may be represented with a
minimum amount of storage space and the computation time is held to reason-
able limits but the data variations which may be represented must be
regular. A substantial amount of effort is usually required for the prepa-
ration of data by a curve-fit technique. Both of these methods a:e very con-
ven~ent when the amount of data to be handled is moderate, but tend to be-
come unmanageable when large amounts of data are required. This usually
occurs when the program, having several degrees of freedom, is committed to
one or the other of these two techniques. Therefore, this computer program
incorporates both of the techniques discussed as a compromise t( take advan-
tage of the more desirable features of both. To do this, a general set of
data equations have been programmed which define each of the aerodynamic
forces. In general, the coefficients for these equations will be obtained
from a curve-read interpolation. Several simplifications may be made to the
equations depending on the flight condition and vehicle to be considered.

Quite often the particular application will not require some of the
terms listed in order to describe completely the flight path and vehicle
under consideration. The subprogram is arranged so that the computer will
assign a constant value to any curve for which the data has not been supplied.
For most curves, the constant value will be zero. This technique will reduce
substantially the time required for the preparation of data. Values inter-
mediate to those introduced in a tabular listing will be obtained by linear
interpolation.
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* (2) Aerodynamic Forces

Aerodynamic forces are customarily defined by three mutually per-
pendicular forces. These are lift (L), drag (D), and side force (Y). Lift
force is perpendicular to the velocity vector in a vertical plane; drag
force is measured along the velocity vector but in opposite direction; side
force is measured in the horizontal plane, positive toward the right, pro-
vided the bank angle is zero. If the bank angle is not zero, L and Y will
be rotated by -BA about the velocity vector

LL

'low

xY

* Figure 29 - Aerodynamic Forces - Wind Axes

These forces may be expressed in the form:

L =q(V,h) SCL(V,h,a,8) (286a)

D =q(V,h) SCD(V,h,a,8) (286b)_

Y =q(V,h) SC",(V,h,a,8) (286c)
X1

where q is the dynamic pressure and S a convenient reference area. The aero-
dynamic coefficients CL, CD, and Cy may be expressed in terms of the aerody- W M
namic derivatives. A

CL=CL+CLa a+ CL 2 alai+ CL 181 (287a)

+ CLf282 + CL aB

CD =CDO + CD, IaI+ CDa2  a2 + CD8 181 (287b)

2 0D 282+ 11CD CD VI

CyA Cy0 + CyaaI Cy 2  a2 + Cy88(2Th

+ Cy82 a1131+ Cya~laI8
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!the body'axis coordinate system introduced in Section V.2. In this case
we have normal force (nf) along the-z axis, side tforce (y) along the y axis,.and" axial force (a) along the-ac axis, as in Figure 30.

(n(y)

V

2z z
Figure 30- Aerodynamic Force in Body Axes

The specification of forces in the body axis system is similar to that
in the wind axis system

nf = qSCN (288a)

a = qSCA (288b)

y =qSCy (288c)

where the body axis aerodynamic coefficients are

CN CN +CN + CN2 aa (289a)

+ CN8Ia + C0N82 82 + %cNa8 8

CA A+ a lc +CAd 2 a (289b)

+ CAI8I + CA 2 82+ lAad c

Cy=Cyo + Cy lal + Cy.2cx2  (289c)

+ CYO8 + C Ye2 O1ld + cyý,8 Ids
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b. Thrust and Fuel Flow Data

The techniques employed in the introduction of the thrust and fuel-
flow data into the solutions of the equations of motion are developed in an
approach similar to that employed in Paragraph (a) which considered aerody-
namic data. An n-dimensional tabular listing and interpolation technique
is used, witi- the independent variables being defined by the type of pro-
pulsion unit being considered. Equations are developed to resolve the thrust
forces into forces and moments in the vehicle body-axes system.

(1) Data Inputs

The number of independent variables which affect the thrust and
fuel flow is determined by the type of propulsion unit being considered.
For the present formulation, the propulsion units are grouped into the
following options: (1) rocket, (2) air breathing engines.

Propulsion Option (1) Rocket - The thrust of a rocket motor is
assumed variable with stage time, altitude and if the rocket is controllable,
it will also vary with throttle setting. The altitude effect is determined
by the exit area of the nozzle, Ae, and the ambient pressure, P. If the

thrust is specified for some constant ambient air pressure, the altitude cor-
rection can be calculated within the subprogram. If the rocket motor is
uncontrolled, the vacuum thrust, in pounds, will be introduced by a tabular
listing as a function of time, in seconds, and corrected as follows:

T =Max 0T - PA (290)
a~ rTvac - l P 0e

The propellant consumption rate will then be specified by a tabular listing,
in slugs per second, as a function of time, in seconds, for the single
engine options, or computed from the thrust and the engine specific impulse,
ISpj, for the multiple engine options. If the rocket is controlled, the
propellant mass flow rate mf is introduced by a tabular listing as a func-
tion of throttle setting. The propellant consumption rate will then be
specified by a tabular listing as a function of mass flow rate, for the single
options, or computed from the thrust and the engine specific impulse, for the
multiple engine options.

Propulsion Option (2) Air Breathing Engines - An air-breathing
engine is strongly affected by the environmental conditions under which it is
operating. Engines which would be grouped in this classification are turbo-
jets, ramjets, pulsejets, turboprops, and reciprocating machines. The param-
eters which will be considered of consequence in this program are:

(a) Altitude (h - ft)

(b) Mach number (MN)

(c) Angle of attack ( a- degrees), and

(d) Throttle setting (N - units defined by problem).
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'""" "Both the thrust and fuel flow are functions of these variables.

In order to accommodate these variables, a five-dimensional tabular listing

an interpolation will be used to obtain both thrust and fuel flow. TheV

Sthrust needs no further correction as the effects of all parameters are

in:• cluded in the interpolated value.

(2,) Multiple Engine Options

' Options are provided by which as many as three engine.,. of differ-

ent types m~y be used simultaneously. For the rocket options, an inert t

mass flow (Ap )which is a function of stage time is computed. Each engine mayJ'

•hav~e its own throttle control variable, Ni. If more Than one engine is

ýUied, the thrust components in the body axis system and the propellant and

inert mass flows are summed.

M : mr+f (291)

-(Ap1 + Ape + Ap3)

Tx =Txl + Tx2 + Tx3 (292)

and similarly for Ty and Tz.

(3) Engine Perturbation Factors

The multiple engine options include provision for several data

scaling factors for use in parametric studies. By proper use of initial

condition optimization or the h-transformation, the perturbation factors

may be used as engine design parameters to be optimized.

(a) Uncontrolled Rocket Propellant Loading Perturbation - If for

a parametric study the analyst desires to change the amount of propellant

on board without changing the specific impulse or thrust action time, he

may use the factor

•T4= mf/mf. (293)

If the stage under consideration is being staged on mass, the analyst must

make an appropriate change to the mass value at staging or the initial mass.

If the staging variable is time, the analyst must change only the initial

mass.o

In order to burn a different amount of propellant in the

same time interval, the propellant mass flow race is changed according to

the relationship

II

mf(ts) =':T4 mf(ts). (294)

The thrust level is changed so the specific impulse will

remain constant, i.e.

T(t s) = T4 TR(ts) -(P -PR)Ae• (295)
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(b) Uncontrolled Rocket Mass Flow Rate Perturbation - If the
analyst desires to change the propellant mass flow rate for a parametric
study without changing the specific impulse, propellant loading or total
impulse, he may use the factor

_T1 = mflmf . (296)

In order to keep the propellant loading constant, the time is scaled as

T = ZT1 ts (297)

where T is the reference time and tsis the actual time. Hence if the stage
unde" consideration is being staged on time, the analyst must make an
appropriate change to the stage time. If the staging variable is mass, no
staging changes are necessary.

Since the mass flow rate has been changed, the specific
impulse is kept constant by scaling the thrust according to

T(t) = &Tl TR() - (P - PR)e (298)

(c) Uncontrolled Rocket Specific Impulse Perturbation - If the
analyst desires to change the propellant specific impulse for a parametric
study without changing the propellant loading or the thrust history level
or shape, he may use the factor

•T2 = "(299)
1:T2- ISPP/ISPRp (29

Since the specific impulse is to be changed without changing
the thrust level, the mass flow rate is changed as

fm(t) = mf30)/ET2 • (300)

Now in order to maintain -he same propellant loading while
using the above perturbed mass flow rate the action time is scaled as

T= t s/8T2• (301)

Hence if the staging variable is time, the analyst must make an appropri-
ate change in the value at staging. If the staging variable is mass, no
change is necessary.

Finally, so that the thrust level will remain unchanged
with changes in the time sc•Lýe, the thrust is computed as

T(t) = TR(T) - (P - PR)A (302)
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a parametric study the analyst desires to change the thrust action time
without changing the propellant mass flow rate, the propellant loading,
specific impulse or the thrust history shape or level, he may use the

'-' '•,'factor

/ts (303)

aIfthe staging variable is stage time, the analysdi must adjust the value

at staging appropriately. If the staging variable is mass, no change is
necessary.

Applying this time scaling to the mass flow rate and the

thrust gives

mfwt) = : fT) (3o4)

and
T(t) = TR(T) - (P - PR)Ae - (305)

(e) Controlled Rocket Thrust Perturbation - If for a parametric
study the analyst desires to change the thrust of a rocket without changing
the specific impulse, he may use the factor

£T5 = mf/mf (306)

So that the specific impulse will remain unchanged, the reference thrust
will be scaled by the same factor

T= (TSTR - (P PR)Ae (307)

The effect on the other problem parameters is determined by the problem

staging parameter values.

(f) Air Breathing Engine Thrust Perturbation - If for a parametric
study the analyst desires to change the thrust of an air breathing engine
without changing the specific impulse, he may use the factor

ET6 T/T= (308)

So that the specific impulse will remain unchanged, the mass flow rate is
scaled by the same factor;

f Ti (309)

The effect on the other problem parameters is determined by
the problem staging parameter values.
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(g) Representing the Mass Data - The vehicle mass at any time can
b= obtained by subtracting from the launch mass the integral of the various
mass loss rates. Let the external inert mass flow rate be a function of ts
only, designated by Ap. Also, let the internal inert mass flow rate, which
depends on thrust level or throttle setting but does not contribute to the
thrust, be designated by mI.

mt = mf + mI +Ap (310)

Let us define an engine mass loss rate as

N = (311)
mENG mf +

Define an engin, specific impulse asS I ta

f tTR(T)dT
- Jo (312)

ISPRENG- No
while the propellant specific impulse is

S~fox

1t= (313)

SPEN I tI•| Combining the two equations gives

"' - j I -
ENGf + m'I

Hence we can write

mt = EG + Ap (315)

where
-T TR

Ha•mEG ISPRENG I:mG = ISPR . (316)

mENG and ISPRENG can then be used in place of mf and ISPR.

When the engine mass flow rate is determined by equation
(316) the analyst must be certain that the appropriate engine specific
"impulse is used. This specific impulse can be incorporated into the per-
turbation equations derived previously The final equations are combined
and summarized below for convenience.
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IRS.

ISPENI

£T2 .SEN specific impulse factor for rockets

YSPEN

CT3 =T/t 5  action tfime scale factor for rockets

=T MP/m~ propellant loading factor for rockets

6T5 = rn,9 lp , thrust factor for rockets

C T6 =T/TR , thrust factor for air-breathing engines

for uncontrolled rockets

T= - ts (317)
£T2cT3

T(ts) = e Tl CT4TR (T) -(P -PR)Ae (318)

t)=ETlET4 TR(T)

ISEG (ts £T2 'SPRENG (319)

(320)
'SPRENG SR

rnt(ts) rnENGNt) + AP(ts) (321)

for con-trolled rockets

T TýENG) £T5 (P -PR)Aa 32

rnEN4G - IENG ET5 (323)

for air breathing engines

T(t) = TER~ts) ET6 (324)

ISENG (ts)= DiE14G~ts) zT6(35
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•ii(14) Components of the Thrust Vector

i| The equations used to reduce the thrust vector to its components
+m-•m•++along the body axes are:

---- % x=T cos XT, (326)

-Ly= -T sin Tcos (37

T ~T

i n z= -T sin XT sin *T" (328)

i 4) and XT are defined and explained in Section V.2. Each eng~ine may have

i~sown)~*and as control variables or as constants.

S(5) Reference Weight and Propellant Consumed - The rate of change of
.• vehicle massz i, is set equal to the negative of the total mass flow
• rate, -mnt. m is integrated to give variation of vehicle mass, m. The
•i• _instantaneous mass is used in the computation of the body motion. The refer-

ence weit is obtained tt by

I •WT =m(32.174 ) (329)

The propellant consumed is computed as:

TX mf = m -A m (330)

T T'
0R

"------.."where m is a reference weight which is input equal to the initial vehicle
• ~weight.0

c. Stages and Staging

•mm •A problem common to missile performance analyses, and encountered
frequently in airplane performance work, is that of staging or the release

'--•'+of discrete masses from the continuing airframe. The effect of dropping a
booster rocket or fuel tanks is often great enough to require that the com-

plete set of aerodynamic data be changed. Configuration changes at constant

• weight, such as extending drag brakes or turning on afterburners, may also
require revising the aerodynamic or physical characteristics of the vehicle.

veAnother use of the staging technique is possible with the present computer
program which does not involve physical changes to the configuration; this
technique ma be used to revise the aerodynamic desiors as function orf

S~aerodynamic attitude or Mach number. With this use of the stage concept,
accurate descriptions of the forces acting upon the vehicle may be maintained
over wide attitude ranges if required.

S • It may be necessary to introduce a stage point for optimization
S •+reasons. This is the case if the payoff or one or more constraints is a

• function of the state variables at other than existing stage points. Because
of the variety of ways by which a stage point may be defined, one stage may

S~cross another stage point as the program is conver.ging. If this happens the
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program is in trouble. The trouble can normally be avoided by proper selec- o

tion of cutoff functions.

6. Vehicle Environment

The models for simulating the environment in which a vehicle will oper-
ate are presented in this section. This environment includes the atmosphere
properties, wind velocity, and the gravity field conditions associated with
#te planet over which the vehicle is moving. The shape of the planet and
theconversion from geodetic to geocentric latitudes are also considered.
In the discussions which follow, the descriptions of vehicle environment
pertain to the planet Earth. The environmental simulation may be extended
to any planet by replacing appropriate constants in the describing equations.

a. Atmosphere

The concept of a model atmosphere was introduced many years ago,
and over the years several models have been developed. Reference (7) out-
lines the historical background of the gradual evolution of the ARDC model.
The original (1956) ARDC model (Reference 7) was revised to reflect the
density variation with altitude that was obtained from an analysis of arti-
ficial satellite orbit data. This revision is the widely used 1959 ARDC
Model Atmosphere, and is the basic option in the present program. An approxi-
mate version of the more recent U.S. Standard Atmosphere, 1962 is also pro-
vided.

The advantage of a model atmosphere is that it provides a common
reference upon which performance calculations can be based. The model is
not intended to be the "final word" on the properties of the atmosphere for
a particular time and location. It must be realized that the properties of
the atmosphere are quite variable and are affected by many parameters other
than altitude. At the present time, the "state-of-the-art" is not advanced
to the point where these parameters can be accounted for and it may be
several years before the effects of some parameters can be evaluated.

(1) 1959 ARDC Model Atmosphere

The 1959 ARDC Model Atmosphere is specified in layers assuming
either isothermal or linear temperature lapse-rate sections. This construc-
tion makes it very convenient to incorporate other atmospheres, either from
specifications for design purposes or for other planets. The relations
which mathematically specify the 1959 ARDC Model Atmosphere are as follows
(Reference '3)): The 1959 ARDC Model Atmosphere is divided into 11 layers
as noted in the table below.

lO-
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Layer H -Lower Altitude UprAltitude

Meters Meters

1 0 11,000
2 11,000 25,000
3 25,000 47,000
4 47,000 53,000
5 53,000 79,000
6 79,000 90,000

7 ~90,000 105,000
8105,000 160,000o

9 160,c"Q 170,000
10 170,000 200,000
1.1 200,000 700.,000

For layers 1, 3, 5, 7, 8, 9, 10, and 11, a linear molecular-scale temper.-
ature lapse-rate is assumed and the followinp equations are used:

1 + 48h
~~7~~7oMeters (331)

(TMb + CR (332) _

T T iA B tan-1(~l.~o (333)

P b [1+ XK1(HO Hb)] -K2  Lb./Pt.2  34

P = [ -lHg Hb) ' l+ Slugs/Pt .3 (35

Vg 49.o21175()I' F'./Sec. (336)

- 2.6961 x10-8'(T 12 t.2 /Sec. (337)
L +98-72)

For the isothermal layers 2, 14, and 6, the following changes are made in the
above equations:

P PbeK3(Hp-b) (338)

p %eK3(gP-Hb)(3)
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Values of the temperature, pressure, density, and altitude at the base of

Aeach altitude layer are listed below along with the appropriate values K1 ,

K2 , and K3 .

A

. 1 2 3 4 5 6

0i -.225.3 x .13"56W80 X 1-4 0 -.159o0187 X 1o-" C

' -5.25622 0 .•1138865 0 -7.5921765 0

K3  0 .1576W32 x io-3  0 .n86887 x i0- 3  0 .2o623442 x o-3

26 518.66 389.908 389.988 5oS.788 508.788 298.188

IPb 2n6.2iO 1472.67599 51.975h18 2.5154578 1.2180383 2.1o82485 x 10-2

% 2.V692 x lo"3 M.o6n•T8 x io-4 7.7643W x o"0 2.88W3201 X 1o06 1.3947125 x o-.' 4a,.oo42 x lo

b 0 2.000. 20. 147000. 53000. 79000.

amniy 78910 11STt~ i 8 9 •

i1 .241458•1 x o10" .8862891o x 0 o11 .75434123 x 105 .350711T6 ix o5 .2129,14 X 10-

r2 8.521.986 1.7082397 3.4164794 6.83k989 9.7613698

K3  0 0 0 0 0

T-b 298.188 "10.188 2386.1a8 2566.188 2836.188I

Pb 2.18117514 X 10-3 1.5564912 I 10x T.56O016T 7 10- 5.8971644 X 1o6 2.9T69r6 x 10x l

Ob 14.26x14856 x 10-9  2.23214W24 X 10-10 1.81458849 X 10.12 1.3387990 X 10-12 6.115060 x 10.13

T*b 9000. 10500. 160M0. rrooo. 200Mo.

Values of the appropriate constants to be applied in the temperature eq. (333)
are listed below.

HO (Km) A B C D

0-90 1. 0.--

90-180 .75951115 .171416I40& 220,000. 25,000.

18o0-1.0M .935T867 .2T396592 18oo0. 1140,000.
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(2) U.S. Stemdard Atmosphere, 1962

The part of the U.S. Standard Atmosphere, 1962 below 90 kilometers
geometric altitude (295,276 ft. altitude) is defined in the same way as
the 1959 model, by the hydrostatic equation and a piecewise linear variation
of temperature with geopotential altitude. Equations (331) to (339) are
therefore applicable, with a different set of constants. These equations
have been programmed, with constants based on the published tabulation of
atmosphere properties (Reference 9) at the base altitudes. The 1962 model
uses a ifferent set of relations above 90 kilometers, which have not been
programmed. The program gives 1962 model properties between sea level and

7I 295,800 feet geometric altitude, the sea level values at negative altitudes,
and zero values above 295,800 feet.

Values of the temperature, pressure, density, and altitude at the
base of each altitude layer are listed below along with the appropriate
values of Kl, K2 , and K3 .

Layer

Quantity 1 2 3 4

KI -. 2255877 x 10-4 0 .48012406 x 10-5 .12199559 x 10-4

K2  o-.5255871 x 101 0 .32844801 x 102 .12202470 x 10

K3  0 .1576958 x l0-3 0 0

Tb 518.67 389.97 389.97 413.104

Kb 2116.217 472.6812 114.3431 17.22518
Pb .2377002 x 10-2 .7061512 x 10-3 .1708202 x l-0 .2429209 x 10-4

Hb 0 10999.474 19999.191 32354.854

Layer
Quantity 5 6 7 8

K1  0 -. 7383899 x l0-5 -. 1572230 x l0-4 0

K2  0 -. 1709562 x 10+2 -- 86o2817 x 10 0
K 860-81 x100 -

K3  .1262323 x 103 0 0 .1891214 x 10 3

Tb 487.17 487.17 454.668 325.170

Pb 2.302550 1.226346 .3766873 .2106440

Pb .2753526 x 10-5 .1466537 x 10-5 .4826665 x 10-6 .3773977 x 10-7

Hb 47051.501 52042.023 61077.348 79192.936

Within the altitude range considered, T and TM (eq. 333) are equal.
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made and the program sets kinematic viscosity, speed of sound, pressure,
,temperature an& density to zero. At and below sea level the parameters

S'pressure, temperature and density are set to the values below. Other terms

are computed as normal.

Pressure = 2116.217C Lb/Ft2 (340a)

Temperature = 518.688 OR (340b)

Density =2.37692 x 10-3 Slugs/Ft3 (340c)

At altitudes between 90 kilometers and 2.6 x 106 ft. the speed of sound is

-- set to 846.50255 and kinematic viscosity is set to 2.3519252 x 10-7 over

Si density. Other terms are computed as normal.

I IThe 1962 model is limited to altitudes below 295,800 feet (90 kilo-

i imeters) and returns sero values above that altitude. At and below sea level,

the sea level values are computed. It has been found that when the atmos-

phere constants are determined from the published tabulations at the base

altitude, the calculated values at .ntermediate altitudes may not agree with

the tabulated values to the number of significant figures in the tables.

This has been allowed for in the 1,59 model by developing coefficients with

• the necessary extra precision to give agreement between the calculated valuesand published tables at all altitudes. The values calculated by the 1962

model are good to about four significant figures, which should be adequate
i for many purposes.

i Kinematic viscosity and speed of sound lose their physical signifi-

cance at very high altitudes, and are not normally defined by model atmos-
pheres above 90 kilometers. The constant values by the 1959 model option

were added to provide data required by the aerodynamic heating routine. The
aerodynamic heating calculation should not be used with the 1962 model option

above 90 kilometers. The constant values of v and Vs in the 1959 model will

give reasonable values of Mach number and Reynolds number for use in the aero-

dynamics calculations to altitudes somewhat above 90 kilometers, say 350,000
feet, above which constant aerodynamic coefficients should be used. The 1962

model will not give any aerodynamic forces above 90 kilometers as density

will be set to zero. The aerodynamic cutoff altitude should be set to
delete aerodynamic calculations above 90 kilometers with the 1962 atmosphere

model.

b. Winds Aloft

The winds-aloft subprogram provides for three separate methods of

Sintroducing the wind vector -as a function of altitude, a function of range,
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and a function of time. This will facilitate the investigation of wind
effects for the conventional performance studies. The wind vector will be
approximated by a series of straight line segments for each of the methods
"mentioned above.

Four options will be used to define the wind vector in the com-
puter program. The three components of the wind vector in a geodetic horizon
coordinate system will be specified as tabular listings with linear interpo-
lations (curve reads) in the following options.

Wind Option (0) - In this option the wind vector is zero through-
out the problem. This will allow the analyst the option of evaluating per-
formance without the effects of wind. This option causes the winds-aloft
computations to be bypassed.

Wind Option (1) - In this option the components of the wind vector
will be spe-ified as a function of time. Wind speed will be specified in
feet per secind and time will be specified in seconds.

Wind Option (2) - The three components of the wind vector will be
introduced as a function of altitude in this option. Wind speed will be
specified in feet per second and altitude will be specified in feet.

Wind Option (3) - In this option the components of the wind
vector will be introduced as a function of range. Wind speed will be speci-
fied in feet per second and range will be specified in nautical miles. The
range utilized in this computation will be the great-circle range.

By staging of the wind option, it will be possible to switch from
one method of reading wind data to another during the computer run. Care
must be exercised in this operation, however, as the switching will. intro-
duce sharpedged gusts if there are sizeable differences in the wind vector
from one option to another at the time of switching. This effect should be
avoided except in cases where gust effects are being studied.

c. Gravity

This section presents the equations necessary for the introduction
of the gravity components into the equations of motion. These components
were determined by taking pai ial derivatives of the gravity potential equa- "A
tion. The potential equation adopted has been recommended for use in the

Six-Degree-of-Freedom Flight-Path Study computer program by AFCRC. Constants
for the potential equation were determined from References (10), (11), and
(12).

Spherical harmonics are normally used to define the gravity poten-
tial field of the Earth, References (13) through (16). Each harmonic term
in the potential is due to a deviation of the potential from that of a uni-
form sphere. In the present analysis the second-, third-, and fourth-order
terms are considered. The first-order term, which would account for the

-log
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erro0r introduced by assuming that the mass center of the Earth is at the
or~igin of the geocentric coordinate system is assumed to be zero. With

this assumption (371)

where Pg P3, and P4 are Legendre functions of geocentric latitude WL

expres• d as

= 1-3 sin2

P3  = 3 sin eL- 5 sin3 *L (342)

P 3 = 3-30 sin2  + 3 sin4  L

The gravitational acceleration along any line is the partial deriv-
ative of U along that line. At this point, it should be noted that the three
mutually perpendicular directions in the spherical coordinate system are
identical (other than sign) to those in the local-geocentric-horizon coordi-
nate system which is defined in Section V.3.a. Therefore, the acceleration
in the *L direction is identical to gx and the acceleration in the R direc-
tion is identical to -gZ Or in the 6quation form:

gzg [- "2-J-3/Re-\ • -• • /9/

9aR R [ 3 2K )P3,
R2g '=) 2 + R 3+ " R- P (43

gXg 1 g - (-6 sin e L cosP2 (343)
-'I-1

( !e ) (3 cos eL 15 sin2  cos (344)

5\R

e 4
+ -- (-60 sin *L cos L + 140 sin3 cos .L

Collecting terms:

2g g R2 L' '
g 2- 2 7 P2 R+ Tk'- P7 (346) 3gg R2
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where

P5 =sin cos

P6 COs (1-5 sin2  (347

P7 = C cos tL (-3 + 7 sin2 "L)

Eqs. (345) and (346) are used in the gravity subroutine with the following
values recommended for the constants:

1g = 1.407698 x 1016 ft. 3/sec. 2

Re = 20,925,631. ft.

-6 
W

J = 1623.4i x 10 (348)

H = 6.04 x 10-6

K = 6.37 x 10-6

It should be noted that these constants and equations pertain to
the planet Earth; however, it is possible to use these same equations for
any other planet. For this reason, the values of these constants will be
programmed as an input to the program so that the applicable constants may
be inserted for the planet under coisideration. Due to limited knowledge
of the gravitational fields of other planets, it is probable that zero values
would be assigned to some of the harmonic coefficients when the program is
used for entry studies on other planets.

The above equations are applicable to a non-rotating planet as the
centrifugal relieving effects caused by the planet's rotation are included

in the equations of motion. In addition, the effects of local anomalies
must be added if it is desired to make a weight-to-mass conversion based
on a measured weight. The program has the options of retaining the first,
the first and second, the first, second and third or the first, second,
third and fourth order terms.

7. Differentiation and Integration

a. Differentiation

Trajectory optimization by the method of steepest descent requires
evaluation of several partial derivatives. Because of the large variety of
functions that must be differentiated as well as the dependence of these
functions on tabular values, a numerical differentiation scheme is used.
Given an arbitrary function f (4)(• is a vector) the partials of f are approxi-
mated by

af f(Ei + ) - f(Ei - 6 (349)

w eis 2(6Zi)
where 6i is normally some fraction of •i

111



., , • • •• .• f. , J , , ,, ., .•: ., . .- ... . .

-M,~

b. Integration

The program contains two integration -outines, both of which are
Vangt kutta formulas. One is a fixed step routine while the other is vari-

S• •I•step. The single step Runge-Kutta routine was used in preference to a

-- • predictor-corrector technique because it was felt that the increase in com-

-- • puter time was offset by the decrease in stability problems.

S~Difficulties in obtaining good solutions to differential equations

41 by numerical method arise from two principal sources. First, the equations
• themselves may be ill-conditioned. The second is that the numerical method

• ~used ma~y be unstable, Reference (17).
•If the equations are ill-conditioned all numerical techniques will

have difficulty. This type of problem is a very definite possibility with

this program because of the large quantities of tabular data. The thrust
tailoff of a large rocket booster is sometimes an. example of this. The tail-

off of the thrust may be characterized by large spikes which produce signifi-
cant impulses, thus the trajectory may change radically depending on whether
the thrust table is read at the peak of the spike or it is read on either
side of the spike. An option is provided in the program which allows the

analyst to specify time points at. which :ntegration steps will terminate.
Thus, by proper specification of these time points it is possible to insure
valid interpolation of the thrust table in this region. If a table is a
function of two or more variables it is difficult to recognize if thise t
probler exists and if it does exist, to do anything about it. Care in set-
ting up data tables can help to minimize the problem.

If the equations are not ill-condiioi lned, most instability problems
that arise with single step methods cr n be solved by reducing the integra-
tion step size. The variable step routine used in this program (Tee

Appendix A) appears to work very well in selecting an acceptable step size.

A- 8. Additional Optimization Functions

a. Introduction

The term optimization function refers to any function which is used
as a cutoff, constraint or payoff function. The form this function may
take is given in Section II. Functions which do not have the form given in
Section II may, in many cases, be used as optimization functions through
the introduction of additional statee time p ois additional functions

which are provided for in the program are described below.

b. Acceleration Dosage

The rcceleration dosage is a measure of the ability of a wtricle or
its crew to withstand the effect of acceleration over a specific period of

time. Suppose at abe can pt,, the acceleration is a(t). Let (a) be

the length of time which the vehicle or crew cus withstand this constant
acceleration. In time i t, the incremental acceleration dose can be defined

Thnondimensionally as :

nu nn as• a cutoff, cnstaint mor payof function.Theuformthisfunction may12



additive,6we obtain the nondimensional acceleration d are(350)

tSjectoryacceeratinethftrm

•1 A =
Ifwe assume that the increments of theacertindsgae

T

A f (351)

-to

For the acceleration dosage to be acceptable, we must have A <1.
Clearly the acceleration dose is not a function of the basic state variables
of position, velocity, and mais at the trajectory termination, for it
depends on the history of the acceleration along the trajectory. The accel-
eration at any instant is a function of the state variables and control
variioles. For the acceleration in any direction, n, is simply:

i Fn

an F (352)
m

where Fn is the component of force in the direction of n. We see, there-
fore, that

A(t) • t(xi(t), a(t)) 2m

is in the form required for a function to be a state variable. This is the
form used within the Steepest Descent Optimization Program. By constraining
A(T) to unity, we should obtain trajectories having acceptable acceleration
dosages.

It is interesting to speculate that in reality this criteria may

well be conservative, for the effect cf ail acceleration pulse will some-
times decay with time. If we had knowledge of the manner in which this decay
takes place, we could possibly construct a damping function, k(a, (t-t'))
where t-t' is the elapsed time from the point at which the acceleration
dosage is received. We could then constrain the function

T

"A = k(a, (T-t')) dt)S "• ~t' dt'(354)

t0 to

c. Heat Created at the Stagnation Point

Under certain simplifying assumptions, the rate at which heat is
created at the stagnation point is of the form

m n
PQ(t) = Cq() q(v) (355)

q

* aý

1137'7ý-
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State variables audqto utilize Q(T) as an optimization function,, we must
make Q(t) a state vexiable.

d. In-flight Constraints

A re4,.irement of a given problem might be that upper and/or lower
limits be placed on the values of one or more functions of the state and
control variables. For example, it might be necessary that the altitude
of some missile never exceed a thousand feet any time during its flight.| Let g(x, a, TS) and G(x, a. Ts) be arbitrary functions. Suppose that a

[]| requirement on the solution of a given problem is that

[g(x, a. -s) <_G(x, a, TS) (356)Ifor the entire trajectory. A new state variable is introduced which

satisfies

Xi = 0 (5•

xj = [g(x, a. T)-G(x, a. T)] if (358)
g(x,' as T)• >(x, a, T)

=0 if g(x, a, T)<! G(x, a. T). (359)
The constraint

XA f a 0 (36g)

is then added to the list of constraints that must be satisfied. In the
program the function G(x, ae,t) can only be given in tabular form. Lower
limits are treated in a similar manner.

e. Linear Combinations of Exi sting Functions

The formulation given in Section II allows optimization functions
to depend on state variables at the end of more than one stage. In practice,
it would be difficult to evaluate the necessary partials for arbitrary func-
tions. If linear combinations of presently computed functicn-s are used, no
stdifficulty arises.

The option of defining new optimization functions by taking linear
combinations of existing functions has been programmed. If the new functionis a linear combination of functions of the state variables at -he end of
more than one stage, this new function must not be used as a cutoff function.
It may be used as either a constraint or a payoff, however.

oly ct r
diffiulty rises
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* !? f. Skin Temperature and Heating

The Six-Degree-of-Freedom Trajectory program and the earlier version

of the trajectory optimization program (Reference 1) included a subprogram

to calculate the structural temperature of a hemispherical stagnation point or an

unswept wedge. The air properties used were those of calorically imperfect

(vibration equilibrium) air. The structural temperature was determined by
assuming a surface temperature, calculating the corrective and radiative
heating rate, and iterating to find the equilibrium surface temperature at

which the convective and radiative heating rates balanced. Experience with

these programs has shown that the surface temperature iteration significantly

increases the computing time and sometimes fails to converge properly. In

addition, the calorically imperfect gas properties were good approximations

to real air only at lower temperatures than those which occur at near-
satellite speeds on hypersonic lifting vehicles which are a current appli-
cation of the optimization program.

Steve Rinn of the Air Force Flight Dynamics Laboratory has developed
an improved aerodynamic heating subroutine which is included in the present
trajectory optimization program. The formulation outlined in this section
is made up of two parts; one of which computes the transient skin tempera-

ture of a flat swept wing at angle of attack assuming an attached shock wave,

and the second which computes the transient surface temperature at the stag-

nation point of a hemispherical nose. The transient temperature is obtained
by integration of temperature rate, considering convective and radiative heat-

ing rates as well as the heat absorbed by the skin. This differential equa-
tion is then added to the set to be optimized by defining the skin tempera-

ture as a state variable. The gas properties are those of air in chemical
equilibrium.

An option has been added by which ideal gas properties may be used

instead of equilibrium air. A second option replaces transient temperature

integration by calculation of the radiation equilibrium temperature, using
an improved iteration technique. These two options permit a reduction in the

amount of calculation at the cost of a loss of accuracy which may be accept-
able for some applications.

The following discussion consists of the formulation provided by
Steve Rinn, plus a description of the two options mentioned in the previous

paragraph.

(1) General Heating Analysis

The heat transfer at a surface element is a function of many energy

sources. Many of these sources, however, are extremely small and are gener-

ally not even considered in more exact analyses. The predominant energy

sources are aerodynamic heat transfer, surface radiation, surface heat
absorption and conduction, shock layer radiation, and internal radiation.

Conduction and internal radiation require a detailed knowledge of both the

internal structure and composition of the structural materials and as suchuare beyond the scope of this program. In addition, these heating terms are

&N
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•small, generally resulting in a heat loss at the two surfaces under consider-
-ation. Shock layer radiation represents the electromagnetic radiation from
tShe high temperature gases in the shock layer and is of little significance
"in the flight regime of the presently envisioned reentry vehicles. SinceI " lift~ing vehicles will largely be confined to the flight regime bounded by

mII the equilibrium glide paths corresponding to W/CL~A's of 10 and 1000, only
,i vehicles of extremely large nose radii will be adversely affected by shock
i layer radiation.

i Ignoring the effects of conduction, internal and shock layer radi-/ ation, the general energy balance equation for a radiatively cooled surfaceelement can be written as

llqc - qr =qs(3)which states that the energa stored in the surface material is the differ-
ence between the convective aerodynamic heat input and the heat radiated1 to space. The basic definition of these quantities may be expressed as

1 follows :

l••= GdTw/dt (362)

___- qr = 14"758xi0-1 3 e(Tw - Tr ) (363)

igg

qal ' ' = h(H w - Hw) (36'4)ciaw

.i i qs represents the net rate that heat is transferred into or out ofthe surface element.- The heat absorption capacity of the surface material
ileenis defined as

where swtands tha are energstored of thesrae materialan6 is the skinfhikess.

lG = PwGCPww 
(365)

w c = w w- 34

/where pw and Cp w are propa•rties of the material and Sw. is the skin thickness.

The properties of some of the representative materials which are presentlyi in use or have been proposed for reentry vehicles arc. presented in Table I

and were obtained from Reference (18). These properties, although a function
of the skin temperature, are input to the program as constants, in contrast
to the tables which were required by the previous heating subprogram, for
several reasons. First of all, over much of the reentry trajectory the skin
temperatures are relatively constant in which case there is relatively little
change in the material propertieb. Secondly, over much of the trajectory the
temperatures are approaching equilibrium temperature values in whicb case the
convective heat transfer is balanced by the radiative heat transfer an-d hence
any drastic changes in the material properties, if they were to occur, would

. have only a very minor effect on the surface temperature'. Finally most of
the common and refractory materials suffer drastically f-m unsatisfactory
oxidation resistance at much lower temperatures than "chu•se noted in Table I
and hence are confined to temperatures at which these large property changes
do not occur.

qr represents the heat radiated from the surface element to space,
or in the case of atmospheric flight, to the freesiream. The surface
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emissivity is also input to the program as a constant. As noted in Table I
•the emissivities for the common and refractory metals are quite low and

SI thus in order to obtain high radiation rates special coatings are required.
I Intermetallic silicon and camouflage paint coatings have been developedII which possess emissivities between 0.6 and 0.75. These coatings also serve

asprotection against severe oxidation damage possessing capabilities of
3000°R for long time durations and 3500°R for short periods.

SI qc, the aerodynamic heat transfer, represents the heat energy trans-4 ferred to the surface element through the boundary layer. The heat transferII coefficient, h, is a function of both the vehicle geometry and the local air

properties and is thus dependent upon the location of the surface element
on the vehicle.

4,N

y Solving the general heating equation for the temperature derivative

T h GHaw-( -H)- .58l-3(T~ k Tr) (366)

Wall temperatures are obtained from this equation by means of the numerical
integration subroutine within the SDF and TOP programs. Let the subscript eSrefer to a hemispherical nose stagnation point, and subscript s refer to a
point on the centerline of a swept wing with a hemispherical tip. The
following differential equations are then obtained for these special cases.

""-i (HH) 4.758GX l0- 1 3 S"57 (Haw - ) (Ts - Tr) (3 67a)

I s= sCp5 % s (367b)

(lha -H)-4.758xl0-
1 3 Ge (Te T) (368a)

w ~Ge

Ge = Pe CPe 6e (368b)

The use of this heating subprogram in these computer programs in-
creases the computation or run time by a factor of from 1 to depending on
the sensitivity of this temperature derivative. This sensitivi y is largely

controlled by the magnitude of G or more aptly the skin thickneas since the

variation of the p~ product is relatively insensitive to both temperature
and material composition as indicated in Table I. In an approximate program

of this type it is not overly important that the wall thickness be realistic
as long as it is neither excessively large nor excessively small. Experi-
ence with this program has indicated that the wall temperatures obtained
will consistently approximate equilibrium temperatures if the nose thickness
is between .01 and .1 feet and the swept wing thickness is between .001 and
.01 feet.
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(2) Swept Wing Stagnation Line Formulation

(a) Heat Transfer - The heat transfer coefficient presented in
the previous heating subprogram is only applicable to an unswept flat plate.
Consequently various modifications are necessary in order to include high
sweep effects.

At present there is no one method available which adequately
describes the heat transfer to the stagnation line of a highly swept delta
wing. As a consequence three flow regimes are frequently distinguished in
"order to provide adequate correlation throughout the angle of attack range
of interest.

The first of these regimes occurs at low angles of attack
and corresponds to the planar flow of an unswept flat plate in which the
flow streamlines are essentially uniform and parallel to the wing center-
line. The second regime is characterized by the divergence of the flcw
streamlines from the centerline towards the wing leading edges and, as the
flow approximately parallels the rey lines emanating from the wing virtual
apex, the streamlines are considered conical in nature. This regime is
applicable until the flow stagnates. The third regime is characterized by
subsonic, stagnation flow which occurs after shock detachment. This regime
is confined to angles of attack greater than the theoretical cone shock
detachment angle and, since these angles do not normally occur in a lifting
reentry, the heating formulation for this regime has been excluded.

In the first flow regime, the heau transfer coefficient is

determined by the Reference E' 1thalpy Strip 'Theory for an unswept flat plate
(Reference 19) as was used in the previous heating subprogram. For laminar
flow this coefficient caii be written as

0.332 *-2/3(~,V .
_____• k 782 ) p*p*V2\.

-778.26 1Hr \(369)

In the second flow regime the heat transfer coefficient is
determined by applying a correction factor to nondivergent Strip Theory, a
procedure frequently referred to as Outflow or Streamline Divergence Theory.
"This correction factor, for laminar flow, is given in Reference (20) as

l (2n + 0.5 (370)
hp

where

n .3.7 tan a tan A (371)

If it is desirable to include the third flow regime then
reference is made to References (21), (22), and (23).

Since it has long been noted that there is a marked increase
in the heat transfer rate in turbulent flow as contrasted to laminar flow,
information on boundary layer transition is of particular importance. Unfor-
tunately the state-of-the-art of hypersonic transition theory is relatively
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primitive and at present there are no reasonably accurate methods available
which predict transition while taking into account all of the pertinent
parameters. However, Reference (24) has presented an empirical equation
whichnconsiders all of these parameters with the exception of angle of
attack. in this procedure the transition Reynolds number at zero angle of
Attack was approximated by 

(372a)

RNT RN. . 1H [ xl106 +0.36 x106 AFIM7733j (cos A)05

RNT 1.552 x 102

which is applicable for sweep angles greater than 25 degrees. In order to
include the effects of angle of attack it is assumed that the transition
Reynolds number is based on the local rather than the freestream properties
noted previously, a fact which has some experimental Justification. The
form of the transition criterion used in the present program is then

0 .4 )o 4 
( 3 7 2 b )

NN2 H 1 x10 + 0.36xl106 4M 31(cos A)0.

1N 1.552 x 102R

Because of the uncertainties involved in the transition state
Wfit is often assumed that transition between laminar and turbulent flow is
inItantaneous at the point where the local Reynolds number exceeds this
transition or critical Reynolds number. However, the step discontinuity is
not compatible with the steepest descent pýrocess, since the partials give
no indication of the jump in heating as wall temperature that will result
from crossing a transition boundary. An exponential function is therefore
used to give a continuous fairing from the laminar heat transfer coefficient,
hl at the transition point to the turbulent value, ht at a slightly higher
Reynolds number (or boundary layer length).

RN1
-(RN 2- RT)T

tri
h 1  (ht-h1 (l el NT -~)(37'3a)

(RN > RNT)

h =h 1  RN2 < R1  (373b)

The nominal value of 100. for T gives effectively a step change, a value
4of about 3. gives a gradual transition which may help the optimization pro-
cess, and a value of 0 gives completely laminar heating.

........... In the first flow regime turbulent Reference Enthalpy Strip
Theory is also applicable. However, rather than using the more familiar
Colburn relation applied in the previous heating subprogram, this program

.......makes use of the heat transfer coefficient given in Reference (25) because
of its increased accuracy over the entire flight regime. This coefficienc is
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o.18 P 24

-*2/3- (374)
~FP =778.26 \r (Log1 0 RNlH 04"v

transitio a lo discontinuity, such as a geometry change or
trasiton ro laina t tubulntflow, occurs this hettransfer coeffi- N

cient is no longer applicable. In order to use this equation in a region
downstream of the discontinuity it is first nece..sp~y to relate the char-
acteristics of the actual boundary layer to the cTharacteristics of an effec-
tive boundary layer which has no discontinuity. This is accomplished through
the use of an effective boundary layer length which is given in Reference (20)_
as41

lHe =12 + lX2  (~375)

where x2 is the geometric distance fromg the discontinuity to the point of
interest and 12 is the effective starting 'Length. For transition from lami-
nar to turbulent flow the effective starting length is given by

12 65. (376)

where lt is the distance from the stagnation point of the nose to the point__
at which transition occurs and, by definition, .....

IlX 2  1H - (377)

Thus the effective boundary layer length is ý

1H, 1 + 65.3 /1Hi (378)
e p*V2lH \lH T

in which case the effective Reynolds number becomes

IRN RN RNl* N
* R* ~ ~ 111 8 H R

RlHe 1 NH + RN / ( R
N2 2W

It is this term which should be used in the turbulent heat transfer coeffi-
cient.

In the second flow regime the correction factor for including M
-ý 4t

turbulent outflow effectus is given in Reference (20) as

h 0.2
hP= (1 + 1.25n) (380)

where n is as was given previously for laminar Outflow Theory.
44
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The preceding equations are only applicable for a continuum,
equilibrium flow and, thus, at high altitudes and Mach numbers various
"low Reynolds number" phenomena, such as viscous interaction and slip flow,
are not accounted for. From Reference (26), the combined effects of these

S~nonclassical phenomena are approximated by! ! hv/h
h 1 M 2+H 22 (381)

h c 1 +-T

i adiiowhere he is the continuum heat transfer coefficient given previously. In

hc h4 (382a)

ii -

when a' x <_ 4 and

hvh = (382b)
when a' x > c. The term, a', as approximated by a least squares curve

i fit, is

•!a, = m.40714 + 0.20829(Hw/HT) + o.86713 (Hw/HT)2 _0.79738(Hw/HT)3

+ O.442979(tHw/HT)k (383)

Sand the term, x, is

-- M2 P Hw / (38 )
±'H2i4PN2 112

This equation approaches free molecular flow values at extremely high alti-
tudes and as such can probably be appllied throughout the entire flight
regime.

The equations which define the chemical properties of air are
common to all of the flow fields around a vehicle and as such the auxiliaryfunctions defining the properties in the heat transfer equations have been
subdivided into two parts ; the formulation of the thermodynamic and trans-
port prope-ty equations which are contained in a separate subroutine CHEMPand presented in Subsection (i), and the formulation of the auxiliary func-
tions which are peculiar to either the swept wing or stagnation point regions
and are contained in the heating subprogram proper.
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(b) Swe t Wing Auxiliary Functions.- The chemical property equa-
tions in Section (4) indicate that all of the thermodynamic and transport
properties required are determined when the pressure and either the enthalpy
or temperature of the particular flow field are known. Accordingly, since
the remaining auxiliary functions are also dependent upon these terms, these
dynamic properties will be considered first.

At present there are no simple, theoretical techniques avail-
able whici adequately predict the local pressure on a swept delta wing
throughout the entire angle of attack regime. Oblique Shock and the Tsien
Similarity Theory used in the previous heating subprogram generally overpre-
dict the local pressure while Nivtonian Theory, also frequently applied toa swept wing, generally underpredicts the pressure. Wedge-cone Theory is Athe most applicable of the various techniques but the complexity of the con-

ical equations makes their use extremely prohibitive in this program.
Reference (27), however, has presented a semiempirical equation based on the
Newtonian concept which is applicable in the angle of attack range of inter-
est. In terms of the pressure coefficient this equation is

p: 1.95 sin2c + 0.3925 sin a cos a (385)•. 10. 3

where

! !• i•P2 _ .M2C21 + (386)

l --- The unswept flat plate heat transfer coefficients were
derived by solving the incompressible boundary layer equations and hence I
in order to include compressibility effects these coefficients must be com-

puted using reference rather than local properties. Reference (19) hasi• ~empirically derived an equation for the referencP enthalpy, which is defined •

as follows:

H*= 0.22H + 0.28H2 + 0.5Hw (387)

The adiabatic wall or recovery enthalpy, Haw, is the valuethat the enthalpy at the wall would attain if the heat transfer was zero
and if defined as

1Haw rHHT + (1 - rH)H2 (388)

The recovery factor, rH, is approximated by

rH= r (389a)

for laminar flow and

rH = (389b)

1L3 
-- 
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"--'-'•for turbulent flow in the suborbital flight reýýme (Reference (28)) where

-- • Pr* is the Prandtl number based on the reference enthalpy. Since the refer-
S~ence enthalpy is a function of the reference Prandtl nuiber whic-h in turn is

• a function of the reference enthalpy, an iterative procedure is required in
S~order to determine the reference enthalpy. However, the variation of the

S~Prandtl number is small and hence can be assumed constant, Over the flight
-'ii!regire of greatest interest the average value of the Prandtl number is about

• 0.75 and hence this value was used whenever the Prandtl number was required.

The local enthalpy, H2, is defined by means of' the conservation
of energy a•'ross an oblique shock wave as

H2 = HT + 0.5V2 2 (390)

The local velocity, V2, is determined from the conservation of mass and
momentum across an oblique shock wave and in terms of the pressure coeffi-
cient is given by

• V2 = (1 - 0.Cp)/Cos a(391)
iVl

The stagnation r total enthalpy, HT, is constant across the shocr wave and
can be ofpreates in terms of the ereestream pr a n

Prandt nmexre i ml n hnecnbssume ronpe atie Ovrthslih

The wall enthalpy, Hw, is obtained directly from subroutine

CHEMP.

With the dynamic properties so defined all of the other chemi-
cal properties are determined through subroutine CHEMP.

The other required auxiliary functions are the local Reynolds
number and the local Mach number which are defined as

P2V21H

V22 (1- N = O.C)cs~(391)

where

-•1H 1 HI + (1.5708 - s)r0 (394)

a as= + D7 (395)
" 7

!!! sa is the surface slope relative to the free stream (x wind axis) at the
I point of interest. a is the vehicle angle of attack, and D7 is the wedge

angle relative to the x body axis at the point of interest.
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i is the geometric distance along the wing centerline measured from the
shoulder of the nose to the point of interest and ro is the nose radius.
The Mach number is defined as

V22= a 
(396)

a2

where a 2 is the local speed of sound and is obtained from subroutine CHEMP.

(3) Hemispherical Nose Stagnation Point Formulation

(a) Heat Transfer - Of the many methods presently available for
computing stagnation point heat transfer the technique presented by Fay and
Riddell in Reference (21) is probably the most highly regarded. In terms
of the heat transfer coefficient the Fay and Riddell equation is (397)

0.763 0 W / w 0.1 dV )0 .5 [ 0.52 Hl
-hFR o778.26 (Prw).6 Ow Uw 0.i .)0.8 PTPT + (Lew-

The definition and formulation of each of these terms is contained in either
Subsection (4) or in (6).

and The previous -- ating subprogram employed the method of Detra,

Kemp, and Riddell (References (29), (4), and (1))to obtain the stagnation
point heat transfer, which is an empirical equation based on the Fay and

Riddell coefficient and experimental data. A comparison was made between
these two methods by computing equilibrium temperature heat transfer rates
which in the case of the Fay and Riddell coefficient were based on the formu-
lation presented herein while for the Detra, Kemp, and Riddell equation the
previous formulation was utilized. Based on this comparison the Fay and Riddell
coefficient was employed because of the increased accuracy afforded by it.

Ihe Fay and Riddell heat transfer coefficient is only appli-
cable in a continuum fluid flow in chemical equilibrium and since deviations
from this classical flow do occur they should be noted.

Nonequilibrium phenomena result from the incomplete develop-
ment of the chemical reactions in the flow and, like noncontinuum effects,
are a low density phenomena. These effects are, at present, not clearly
defii.ed but they appear to be rather insignificant from a standpoint of heat
transfer and as such will be given no further consideration.

iThe deviations from the classical continuum stagnation pointequations, termed "low Reynolds number" effects in the flight regime of inter- P

est in this program, are categorized as vorticity interaction, viscous layer,
slip flow, and merged layer. A detailed explanation of these phenomena can
be obtained from References (30), (31), (32), (33), and (34). Although the
first two flow regimes have been fairly well documented there is very little
literature available on the combined effects of all of these phenomena and,

125

-........



#1W

LAN '5 N , 1:,MQM=2ii-.

as such, there are presently no closed form solutions for the "low Reynolds
number" regime. In this' subprogram the combined effects of these deviations
were obtained by curve fitting the numerical solutions of Reference (31)
which, in terms of the heat transfer ratio, are approximated by

h ( 0.) ,n (398)

where
e = pl/OT (399)
Res PlV1 r o /PT (4oo)

= 50 e2 Res + AR (4ol)

AR = .285, (x < - 1) (402a)
AR = 0, (x>l) (402b)

AR = .493 + .272667 x + 0.07 x2  (402c)

+ 0.0063 x3 , (-1 < x < 4)

m = o.6(RY051428  (403)

x = 2 + Log 10 (e 2 Res) (hOW)

n = 0.51973 - 8.0762 x 10-3 x -0.21707 x 2 2.4891

2 3 ~2 4 -25
x 10-2x + 6.2 6 01 x 10x - 1.2118 x lO- x

(0 < x <_2.95) (405a)

= 0 (x > 2.95) (405b)

= 0.52 (x < 0) (405c)

The term, hFR, represents the Fay and Riddell heat transfer. These equations
are restricted to values of e >.04 and e 2 Res > .01 which in terms of alti-

tude is between 300,000 and 350,000 feet depending on the nose radius.

(b) Auxiliary Functions - As was the case with the swept wing

auxiliary functions, all of the terms in the stagnation heat transfer coeffi-

cient are related to the chemical properties. Accordingly the formulation of
the dytamic properties required to obtain these chemical properties will be
considered first.

The local stagnation pressure behind a normal shock wave for

an incompressible boundary layer is
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B thereal gas stagnation pressure is approximated by

i -= 1+l1.4 M1
2 (1 -0.5 p•--) (hO6b)

where

MM 2M+ 101a 5S

i iP1 1II (407)

p2 2

tion The second state variable required in computing the stagna-
An exanproperties is the stagnation enthalpy which was given previously as

oiH .5vi 2 (M2  + 5)/Mi 2  (408)
pIrevious It should be noted thot the atmpretsubroutines in the

ga sopre ious S and TOP programs cease to compute the free stream speed of

iI • sound for altitudes in excess of 300,000 feet in which case the Mach number
I I becomes undefined and all of the equations given previously in terms of this

parameter are no longer applicable. The 1959 ARDC atmosphere subroutine has

been modified to calculate approximate values of speed of sound above 300,000i feet but the 1962 atmosphere option is limited to about 300,000 feet. This
option could be used with HETS by adding an equation of the following form1 - .1428 0l52/p (409)

towheprogem

With the stagnation pressure and enthalpy and an initial valueof the wall temperature, the remaining chemical properties required by the

heat transfer coefficient can be computed.

The velocity gradient at the stagnation point of a hemispheri-

cal nose can be determined through the~ use of a Modified Newtonian pressure
distribution (References (20) and (35))which yields

dV 1 . 2(PT - P1)(10
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This equation is only applicable for Mach numbers in excess of 5 because of
a like restriction on Modified Newtonian Theory. For Mach numbers less than
this value +he velocity gradient is approximated by an empirical equation
in Reference (20) as

dV2
Sd V 2V 2

S. = 1.5 -0 (1 - .252M2
2 - 0.0175M2

4) (411)

where 2
V2  MI + 5

SM 2
2 =M-, 2  + 5 (4l2b)

:T = (412a)

M2 (412b)

7M 1

IIIIfor Ml > 1laud

The value of the Lewis number used in this program is

"Lew = 1.4 (414)

which is commonly used in the Fay and Riddell equation because it is some-
what representative of its maximum value and additionally correlates well
with experimental data. Although the Lewis number presented in Reference (36)
varies significantly the effect on the heat transfer is small. Since the
additional formulation required to incorporate the variable Lewis number is
considerable, this effect will be neglected and the Lewis number parameter,

(Lew 0 521 1) HD/HT

i

can be revritten as

1 + 0.191 HD/HT

The dissociation enthalpy, HD, was obtained through an empirical equation
in Reference (20) as

HD 1 .8219 x 108 (Z-l) (415a)

for Z < 1.2 and

HD 3.6438 x107+ 3.4906 x 108 (Z - 1.2) (415b)

for Z 2Ž1.2.
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The Fay and Riddell heat transfer coefficient is a function
,of the wall Prandtl number. Since in a typical hyperv~locity reegtry the
wall temperature will range between approximately 3500 R and 6000 R the
average value of the Prandtl number will be approximately 0.75 as was thee?
case for the reference Prandtl number in the swept wing formulation and 4
thus this value was used in this program.

I I(4) Chemical Property Subroutine, CHEMP

J The chemical properties associated with a gas describe its macro-

• D scopic and microscopic behavior or, in other words, the chemical state of
J• a gas is described by its thermodynamic and transport properties. The

S• transport properties are themselves defined in terms of the thermodynamic
i properties and hence the thermodynamic properties will be considered first.M-

SE The thermodynamic properties of a gas are categorized as either

thermal or caloric state variables.

SE'M~e thermal propertie- are those properties which are not explic-

i El itly involved with the energy of the system and, in this program, the s-g-
•__•t•nificant thermal properties are pressure, temperature, and density. The
i •relationship between these terms is expressed by the thermal equation of

J • state,

• mm, The compressibility factor, Z, is a measure of the number of moles of dis-
.• •!•sociated, ionized gas to the number of moles of undissociated, unionized

S• i•gas. Under atmospheric conditions the compressibility factor for air isone, the perfect gas assumption. However, for real air, Z can deviate from

iI• unity for two reasons: at low temperatures and high pressures the inter-

i [] molecular forces between the air molecules, which account for the possibil-
J i ity of liquefying the gas, become important while at high temperatures and

SJ low pressures dissociation and ionization phenomena occur. Intermolecular
J ! phenomena, although important in high speed test facilities, are of little

6onsequence under free flight conditions and hence only dissociation and
• ionization need be considered.

S•! Dissociation is a two-body chemical process in which a molecule

S•breaks up into atoms when the internal vibrational energy is sufficiently

A0

S. increased, through collision with the other particle, to severe its intra- 1

7,

'•!i l~lmolecular bond. In turn recombination is a three-body process in which two
atoms and a third particle collide, releasing energy to the third particle
and forming a molecule. In a gas in equilibrium a continuing process of

molecular dissociation andi atomic recombination occurs in such a manner
that a statistical net degree of dissociation results. In a like manner
ionization is much the same process with the exception that a particle col-
liding with a free atom releases enough energy to the atom to enable an
_electron to overcome the electrostatic force field of the atomic nucleus

tand escape from its shell. t.

j-M
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The computational procedures required in solving for the compres-
sibility factor are relatively complex, i.e. References (36) and (37). Con-
sequently machine storage and computational time limitations involved in
this program require that these procedures be left to more sophisticated
programs. Fortunately, Reference (38) has empirically curve fitted the com-
pressibility factor of air and the resulting equation is

Z= 2.5 + 0.1 Tanh(AZ/900-7)+0.4 Tanh(Az/1800-7) + Tanh(Az/4500-5.8)

(417)

where

AZ T(l-.125Log1 0 (P/P 0 )) (418)

The caloric state variables are those properties which describe
the energy or energy related state of the system and, as such, are functions
of the thermal properties. The important caloric properties 'n this program
are the enthalpy and the speed of sound. The relationship between the ther-
mal and caloric variables is given through the definition of the enthalpy,

H = E + P/p (419)

c.r
H = E + ZRT (420)

The energy of the system is the sum of the translational, rotational,
vibrational, and electronic energies of the molecular and atomic species
within the gas. When a mixture of gases is considered the equations associ-
ated with the various mol fractions and component energies are quite complex
and thus machine storage and computational requirements are again prohibi-
tive. However Reference (38) has also empirically curve fitted the statis-
tical net energy of the system for air. When combined with the equation
above, the enthalpy of air can be given as

1 < Z < 1.2 (421)
-- iH/RT Z + (2-Z)(2.5 + (5400/T)/(exp(5400T)-l)) + (Z-l)(3 + 106200/T)

1.2 < Z < 2

H/RT Z + (2-Z)(2.5 + (5400/T)/(exp(5400/T)-l) + 0.2(3 + 106200/T)

+ (Z-1.2)(3 + 203400/T) (422)

V2 <Z <2.2

H/RT = Z + (4-z)(l.5 + 91800/T) + (Z-2)(3 + 396000/T) (423)

The speed of sound is defined as

a2 = O ( DO T ap) 1  (424)

A 130

V ;~ mmln • -'m, 4
4

mIn~ - -n ~ -. •m.m 4 ml• •. ••



, J-W, Z-, %vAY R

- ~ V

a2 y ZR

Z DP
5 lP 3Z )

The specific heat ratio, y, is defined as

Y= Cp/CV (426)

where

Op = (DH/3T)p (427)

4 and

CV= (DE/3T)V (428)

and thus can be obtained through differentiation of the enthalpy equations. ZQ
Since this requires double differentiation for both a constant pressure and4
a constantu volume process, the specific heat ratio can be rewritten in terms
of previously defined parameters and just one of the specific heats, in this
case Op which will be required by another section of subroutine CHEMP, as

*(Z + T( aZ/ DT)~) 'H 40N
l/y =1 - - -Pa/)T kCJ(429)

*The specific heat at constant pressure, from the above enthalpy definition,; j
can be expressed as

Cp H/T + R(Ta (E/RT)/ aT + T3 Z/aT)p (430)

where, from the enthalpy equations,

1 < Z < 1.2

r 54oo/T 15400/T '

L(exp(54oIilJL (exp(54oo/-T)-l)J

+ 5400/IT 1
(Z-1)(lokzoo/T) + (3+1,,)6200/T)-(2-5 +ep~T0T-

T(3 z/3T)~ (431)

4k

131



ONii I F

• 1.2 < Z < 2

-0.2(I06200/T) - (Z-I.2)(203OO/T) + (3+20340/T)"

-(2.5 + 54o00/T ) T(Z/T)p (432)exp(54oo/T)-l

2 < Z < 2.2

Ta(E/RT)/aT = -(4-Z)(91800/T) - (Z-2)(396000/T) + (3+396000/T)-

(i.5+91800/T) T(aZ/DT)p (h33)

Finally the compressibility derivatives are obtained through differenti-
ation of the compressibility equation.

A(ZBTp Z r 5-Tanh2 (-o A-2 Tanh A2-- 7) + Tanh2
T~a/3T~ =9000 L- )2I~ 2 10

AZ 58 44i4500 -58, hh

-P(=Z/P)T -. 0542868(T/Az) T(Dz/aT)p (435)

where AZ is the term given previously for the compressibility factor.

These equations for the speed of sound appear, perhaps, unneces-
sarily complicated in that the local speed of sound, required in the swept
wing computations, could be approximated by

a2 = 1"3P2 / P2 (h36)

without introducing a significantly large error into the program. However,
as will be seen in a following section of CHEMP, the only additional formu-
lation required for the speed of sound which is not required by the rest of

the subroutine is the equations for y and (3Z/'P)T. Accordingly the complex-
ity of the speed of sound was retained simply because the required equations
are a requirement for another section of CHEMP.

The transport properties of a gas are those properties which deter-
mine the change in the internal dynamic flux due to collisions and reactions
or, in other words, they define the transfer or transport of molecular mass,
momentum, and energy. Mass transport is defined in terms of diffusion,
momentum transport in terms of viscosity, and energy transport in terms of
thermal conductivity. In terms of the heat transfer equations used in this
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_• program, diffusion and thermal conductivity are only applied implicitly in
• • that they define two important transport parameters, the Prandtl and Levis

numbers. Although these parameters were noted previously they, in conJunc-
tion with the viscosity, will be treated more thoroughly in this section.

The transport properties of low temperature air have been relatively
well defined for a number of years but, in contrast to the fairly satisfac-
tory state of development in regard to the thermodynamic prcperties, know-
ledge of high temperature transport properties is in a relatively elementary
state. Of the many techniques presently available for computing these prop-
erties, those of Reference (37) are probably the most reliable. Because of
the complexity of the equations given in Reference (37), h *ever, this pro-
gram has relied heavily upon the procedures of References (36) and (38)
which do not differ greatly from those of Reference (37). ~ ~

The viscosity of low temperature, undissociated air is given by
Sutherland's equation as

S= 2.27 x 10-8 T .
T + 198.6 (437)

which is used to determine the viscosity throughout this program. The vis-
cosity of dissociated, ionized air was obtained from Reference (38) which
approximated it by

•-- 1+ .023 T + 18001[5Lo•IO(P/P 0)-.

1800 anh ~ i. 5+.l125Log 10 (P/Po) U

ITT

1 + exp \ .9+0.1LOgl 0 (P/p 0 ) /](438)

where •o is Sutherland's equation above. This equation has not been pro-
grammed in this heating subprogram because of the other approximations made
with the transport properties but it was used when making the comparison
between the constant and variable Lewis numbers in the Fay and Riddell equa-
tion.

The Prandtl number, as used in the heat transfer equations, is
defined as a n

Pr = -- (139)

where Cp and K symbolize the frozen specific heat and thermal conductivity.

The frozen values result from the fact that in considering the definition
of the heat transfer in its most basic form,

K 3T
w d ay (440)
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the thermal conductivity, K, can be rewritten as

K = Kr (hhl)mr

where K is the frozen thermal conductivity due to molecular collisions and
Kr is the reaction thermal conductivity due to mass and chemical diffusion.
In solving the energy flux equations, the fr-zen and reactions terms are
considered separately and the analytical equations resulting from these
solutions are generally expressed in such a way that the transport proper-
ties are expressed in terms of the frozen chemical properties.

Since pressure obviously has little effect on the frozen Prandtl
number, it was curve fitted as a function of enthalpy at a pressure ratio
of approximately 0.01 atmospheres as given below.

H < 1.5

Pr = 0.83854-0.615Hl+0.75hhH1
2 -0.31888Hl 3+0.04388H1h (h42)

1.5 < HI <_ 30

Pr 0.75858+9.2825 x 10- 3H1 -. 98875 x 10 3H1
2 .'.50557 x 10- 5H1

3

1.h0088 x lO-6H1  (443)

where

H1  H/17  (4)4)

Because the variation of the Prandtl number is small, it was not programmed
but again was used in the variable Lewis number comparison.

The Lewis number, noted in this program, is defined as

Lew= D p (445)
K

where D is the binary diffusion coefficient. From Reference (36) this
coefficient can be approximated by

110

Dp = 1.46775 - (1h6)

and thus

Lew 1.46775 - (447)
wZS11

13
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where

S =O.9245-5. 9214xlO-Tl+9. 6307xlO-3T1-l .l901xl0-3T13+8.9775xlO-Tl

-3. 59l5xl0-6T5+5. 7939xi 0-T (448)

and

T, T/103 (449)

Pr indicates that the Prandtl r:umbeý' is frozen. Again this parameter was
not programmed but was only used for the variable Lewis number comparison.

There are obviously significant differences between the real or
imperfect gas properties and the calorically imperfect (those properties used
in the previous heating subprogram) and perfect gas properties. Real gas
effects on the heat transfer, however, are not nearly as pronounced because
the discrepancies tend to have a compensating effect and the errors incurred
are generally not excessive. The real gas equations were retained in this
program, because of the increased ac'uracy afforded by them.

As long as the continuum, chemical equilibrium restrictions on the

real gas equations are satisfied, they may be used to obtain the properties
of the freestream, in'Tiscid shock layer, and boundary layer, the only flow
fields of :zignificance in this program. The freestream properties, however,
are computed in the atmosphere subroutines within The SDF and TOP programs
and hence will not be considered further.

The boundary layer properties are considered to be those proper-
ties at the inner edge of the boundary layer or at the surface. From the
real gas equations all of the required thermodynamic and transport proper-
ties are determined when the pressure and temperature are known. The wall
temperature is readily determined either as an initial input to the program
or, being the variable of immediate importance, through the integration sub-
routines within the SDF and TOP programo proper. The wall or surface pres-
sure is assumed to be the local pressure coaputed in the heating subprogram
proper as the pressure gradients through the boundary layer are generally
e:'tremely small in e -ontinuum flow.

The inviscid shock layer properties are considered to be those
properties at the outer edge of the boundary ]aye-, and are referred to as
the local properties. Again all of th- chemical properties are determined
whenever the pressure and temperature are known. The local pressure is
obtained from the equations presented previously but it is the local enthalpy
raoher than the local temperature which is accessible from the subprogram
proper. Thus, as a matter of convenience it would be more desirable to
express the real gas equations as a function of enthalpy and pressure, in
direct conflict with the boundary laye±c requirements. Various methods of
obtaining the real gas equations as functions of enthalpy and pressure were
examined, i.e. References (28) and (39), but in general these techniques
either required considerable machine storage and/or afforded neither the
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accuracy nor the reliability available with the equations presented in this
program. In addition the use of two separate procedures was somewhat imprac-
tical considering the limitations already imposed on this subprogram. Con-

sequently when pressure and enthalpy, as the independent variables, are used

in conjunction w-ith the real gas equations given previously, an iterative
procedure is required to compute the chemical properties.

Although the SDF and TOP programs contain a.- iteration subroutine
CON- Z, this subroutine was not used for the iteration required by the afore-

Semntio,,d equations. The technique used in CONVR.G is not particularly fast
~and is susceptible to occasional divergence. The iteration procedure u~ed

i•n CHEP is a numerical integration technique employing the Runge-Kutta

S~second-order formula. Although this technique possibly requires slightly
more machine storage than CONVRG, it has the added advantage of a rapid solu-

S~tion and, in the suborbital flight regime was always found to be convergent.

In terms of the symbolism used previously in this program, the Runge-Kuttaformula is

Tn+., Tn + .5(K1 + K2) (450)

where
Hn+1 - Hn

K1. - dHn/dT (451)

and
Hn+1 - Hn

K2 = DHn/aT (452)

This technique involves the use of the enthalpy derivative but, since the
pressure is held constant while the iteration is performed, this derivative
is actually Cp which was defined previously in the speed of sound formula-
tion. Most ofider the limitains alrea Cp equations have oeen previously
defined for tpre enthalpy equations and thus the use of this derivative is
inot overly prohibitive.

The manner in which this procedure is utilized is as follows: Sub-
program HETS enters subroutine CHEMP with a known value of H and P at the
given fPis aonuical and desires to find a value of T corresponding to
H and P. Since HETS also enters CHEMP with a value of T corresponding to
the preceding flsght condition, CHEMP designates T as T and proceeds to com-
tion and, inwhich it rhen compares with H. If the difference between verent
Inis within the set tolerance then CHEMP sets Tn+l equal to Tn and proceeds

S~to compute the other chemical propertie.s. If the difference is not within
t whe required tolerance then CHEMP computes dHn/dT and

HHn~lH

K1  _ H- T (453)

dHn/dT

and sets
Tn+K= Tn + Kl (454)

A

K2 1 nnmndT (um2)
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The value of Hn+KI is computed and again compared to H. If the required
tolerance is met then CHEMP sets Tn+l Tn+K1 and proceeds as above. If not
then dHn+K1/dT and

K2 dHn+Kl/dT (455)

are computed and CHEMP sets

Tn+l = Tn+K1 + .5(K2-Kl) (456)

If the required tolerance is still not met then CHEMP sets

Tn Tn+l (457)

and the entire process is repeated.

(5) Ideal Gas Properties

The calculation of real gas properties, especially the iteration
for T as a function of H, uses a significant part of the computing time
required for heating calculations because it is repeated so often. It may
sometimes be desirable to reduce the computing time by changing to the
simpler but less exact ideal gas properties. This option has been added.
to the program, and will be used in heating calculations unless real gas
properties are specified by input. The equations are

If temperature is given:

H = 6008. T (458)

"If enthalpy is given

T = H/6008. (459)

p = 1.232819-P/T (460)

2.27 x 10-8 TI5/(T + 198.6) (461)
•a• B•022 "T/2

a= 49.022-T (462)

(6) Radiation Equilibrium Temperature

A vehicle designed for radiation cooling is likely to have a very
thin wing bkin, with small heat capacity. If the actual skin thickness is
used in the transient skin temperature calculation, an integration step size
smaller than that required by the trajectory integration may be required by
the transient temperature integration, with a corresponding increase in the
amount of calculation. This difficulty can be reduced by assuming a larger
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askin thckessrihorae heat capacity. novo Anotheqibriupossibilityr isto

which the convective and radiative heating rates balance. The integration
of the transient temperature differential equation is replaced by an iter-
ative solution of a nonlinear algebraic equation for net heat flux. This
should save computing if too many iterations arc - needed, and may be
c~loser to the right answer than the transient temperature of a thicker

skin would be.

The heating routine has been modified to calculate equilibrium tem-
perature instead of transient temperature for the wing skin when the skin
thickness is zero. As previously noted, the iteration for equilibrium tem-
perature in the previous optimization program sometimes did not work very
well. An improved iteration method is used in the2Present program. The(method of false position is used with the Aitken 6 process to improve con-
vergence. The net heating rate equation

qntT)= c- qr (h63)

is solved with trial values of Ts until qne is zero within a tolerance Eq
The tolerance is the smaller of e

Sq = 1 2 (46)

and
4= .01 (U.5 Ts3) (h65)

SThe sequence of trial values is generated in the following way. An initial
vasue zero heat capacitly, pertured folue (Ts2)iare used to calculate the
whichthesp ond vle sotiqvet and radiat e hatig rmethod of false position
given astion ofia volue i e'r2

Ts 3  = F (Tsl,Ts 2 ) (h66a)

where

F(r,s) = e''-str (h66b)

ne()- qnet(r)

Tse and one of the pair (Ts ,T) are then used to find a new trial value
by the same method. Let the vamrue of Tf or The which was used be calledTwe, let the one not used be T and a the new value Ts . Then

Ts5  = F (Ts 3 ,TsQ) (h67)

Ts_ and the two values Ts5 and Ts5 which were generated by successive appli-ca-ion of the method of false position then form a sequence from which an
improved estimate Ts6 is generated by Aitkens 62 process.

-. 1( 6

13
-and

I? -"'l
eq- ol --------- 

465

The sequence of-'- tria~l, vaue is geerte intefloig a.A nta
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= D(T ,Ts 5 ) (46 8a)• s6 Tsz ,T9s5

where D(r,s,t) = t t- 2

t-2s~r(468b)

04
One of the set (Ts Ts Ts) and the last trial Ts are then used to make')3 s 6
a new pair (Tsl' ,TZ) ana the sequence begins again at equation (466).
This procedure is repeated until e is zero within the tolerance eq. The
method has proven reliable and uses less computing time than the transient
temperature calculation.

9. The Rubber Booster

It is often desirable to find optimum values of certain design parame-
ters of a vehicle in addition to the usual control variables. The program
has the ability to do this through the use of the h-transformation which
was defined by eq. (4). It will normally be necessary to program the equa-
tions which define the h-transformation in order to use this option.

A special case which bases the structural weight of the missile on a
reference vehicle has been programmed. The length (LS) of the fuel tank in
each stage is optimized. It is assumed that the fuel tanks are cylindrical
with hemispherical ends (no storage space lost because of divider between
fuel and oxidizer). The volume (Vs) of the tank for the sth stage is given
by

VS = (LS-Ds) + w(DS) 3  if Ls >_Ds

2 (469)1T(Ds )2 Ls
= ---6--- if Ls < D

where Ds is the diameter of the sth stage.

The weight of the propellant (Ws) is
pgiven by

LS
m = SVS, (470)

p

where p s is the combined bulk density of
the fuel and oxidizer. The structural

Fig. 31- Propellant Tanks weight (msts) of each stage is given by (Ref. 40)

m_ + A)213+ ASLS, (471)mt=Al, + A2 +m38VsA
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where the Ais, i =~ 1,2,3,4, s = 1,2,..., S are constants which depend on
the reference vehicle and turps is the weight of the propellant for the
sth stage of the reference vehicle. Eq. (471) is a good estimate of the

structural weight only if the final optimized values of Lsare not far

from those of the reference vehicle.

ThyThe probl~emis solved by introducing three additional state, variable.
Thyare, mtepropellant mass remaining in the current stagers th

structural Mass of the current stage and FLUXA. FLUXA is made into a con-
trol variable. The h-tr&M sformation is

msi m(S-1)f- (m(s-1)f) (472)

pi =p(FLUxA(s-1)f)(71

mSi s(FLUXA(S-l)f) (473)

st

theX reeec vehcl an fRsi thewihoftepplanfrte

(474

FLUX stg 0f (475)enevhcl.E.(71 sagodetmaeo h

fromthse)fis the length of the t stage so the functions p and s follow
from eqs. (469), (470), and (471). The initial transformation is

mph = p (FL().-K1  (476)

iit

rst

FLX 0(LUB (477)

Swhere FLUXB is the length of the tank for the first stage.

Ms-1) th
whereiis set to the nominal length of the tank in the s stage

through jput data. FLUXA is set to zero. Thus the length of the tank
in the s stage will change from cycle cycle because FLUXA is a control
variable. A convenient cutoff for the s stage is

ms = . (478)

Since the length of the tank for the first stage and the initial mass
are unknown, an initial condition search will have to be made on these two
quantities. The final mass or payload would be known and must be constrained,
or used as a cutoff. If the problem is to be meaningful the payoff would
have to be something that would limit the amount of fuel. It may be the
initial mass or some cost function which is a linear combination of the stages
whose lengths are being optimized.

The above formulation of this problem has the advantage that the number
of state variables does not increase Ps the number of stages increase. It
"has the disadvantage that the aerodynamics may not depend on .Aage lengths.
If it is necessary for the aerodynamics to depend on stage length, then there
should be a state variable added for the length of every stage which is to
be optimized. The h-transformation must be changed accordingly.
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It appears that the h-transformation concept will allow an analyst to
optimize a wide variety of design parameters. A word of caution is in

* I 'order, however. State and control variables, cutoff, payoff and constraint •
functions and the h-transformation are all defined in Section II. If these AR
definitions are ignored, it may be impossible for the program to converge
to an optirmum. If the definitions are obeyed, the program will converge
normally and should converge to the optimum. M

C •10. The Maneuvering Target

a. Introduction

This option of the program is capable of op+i-izjng the flight

of one vehicle attempting to intercept or rendezvous with a second vehicle
flying a prescribed trajectory. Additional optimization functions for use
in conjunction with weapon systems have been programmed.

The target trajectory is generated through the use of the trajec-
tory equations. The time histories of the target state variables are
stored on tape making it possible to compute the various optimization func-
tions each time the interceptor trajectory is computed. Tne target state

variables and therefore the optimization functions are functions of time.
For this reason time must be listed as a state variable.

b. Interception and Rendezvous Conditions

(1) Coincident Interception I 4

By coincident interception, we mean that the target and inter-
ceptor simultaneously occupy the same position in space. Effectively, this
type of terminal condition is required when the attacking vehicle is unman-
ned and has a proximity type fuse.

As both the target position and the interceptor position are
known in the (Xe-Ye-Ze) coordinate system, the simplest way of assuring R,

coincidence is to satisfy the constraint.

RAT AT T 2T 0 (479)

Where __

XA =Xe Xe (4 8 oa)

YAT =e Ye (480b)

ZAT ZeT - Ze ( 4 8 0c)

Here, and for the rest of this section, the subscript T refers to target.
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(2) Rendezvous

For rendezvous of two vehicles, we must constrain the vehicles
to the same spatial point and equate their velocity vectors. This can be
achieved by applying the constraint given by equation (479) and also

VAT = (AT2+ (YT2 + (ZT) = 0 (481)

c. Lead Pursuit Attack

i •.• In a lead pursuit course, the interceptor path is chosen so that
a missile, when launched in the direction of the interceptor's velocity
vector, will collide with the target at some time, TC, provided the target

i continues in unaccelerated flight.

AA

S~~Target path--
F .sve mt racinge

SLine-of-sight asp e g e il e

a. Lead PMissile path

-- •Interceptor V

n Figure 32-tInterception Triangle

a The target velocity vector and the interceptor position define a

I plane in space. The vehicle and missile velocities, together with the
vehicle posiions and the collision conditions, define an interception tri-

angle in this plane. This situation, together with some of the commonly used
terminology, is illustrated in Figure 32. The interception triangle geometry
is given in Figure 33.

161Tare VT, TaCe =paRT

•;• .• Figure 33- Interception Triangle Geometry

tm l, i.' T io t

f" is given_____in__Figure_____33.
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The aspect angle, 0 cnbe ccaiputed from the scalar product I
of vectors slong AT and TC. Me line-of-sight vector, AT, can be expressed

* in the (Xe,fe,Ze) system as

AR =(XAT i + YAT* j + Z AT' k) (482)

R=( 2+ yA2 +z 2T) 1/2 (483)AT (AT AT T

where i, J, and k are unit vectors along Xe, Ye, and Ze, respectively, Simi-
larly, the target velocity vector, which lies along TC, can be expressed as

V T UeT .1+ yeT J +WeT 44

Taking the scalar product of these vectors, we obtain

(E )(V )Io(180-0A~) =X.TUe + V e+A T 45
(AT) ITcoT+ AT* VT +ZA (45

or

We.Cos O A XAT U e + Y A Ve + V T
AS T -r AR.e A.e (486)

4A.VT1
It may be noted that

* ~~00• <10
< ASP 180 (487)

Before proceeding further with the solution, we may note that at this point
we know three things about the interception triangle. 444;44444

(1) The side AR

(2) The aspect angle, eAP~.~

(~)AC VM
()The ratio of the sidesliy

Y4 V4 M

Fuppose we construct a similar triangle to ATO, by dividing each side by the_
quantity, VTTC. Let this triangle be denoted by A T C. With point T as
center describe a unit circle, as in Figures (34) and (35). Construct a ~'
radius vector incjined a' the aspect angle from the right running horizontal!,
YTC. The intersection of this line with the unit circle will be the point -U.
Further, the point T must lie to the right of Talong the horizontal. Drop

T a perpendicular 'from U to P. The magnitude of C5P is

CP =sin 
0ASP (488)
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Now, with if as center, construct a circle of radius VT The points at
which this circle intersects the line 'Th2 define the possible interception

* triangles. Consider the case of <900. It follows immediately from
Figure (34) that if

(489) ~ ~VM

V T < sin eAS

the interception triangle cannot be completed and no solution exists.

if

VMsin 0AS <.~ < 1(490)
T q

there are two possible solutions, corr sponding tc S1 and S2. These twoAl
solutions coalesce into each other at -=sinO .

VM VTASP*
If v the left hand solution ceases to exist and we haveVT

a single solution corresponding to R2.

When AS > 900, we see from Figure (35) that an interception tri-
angle can only be constructed when -> 1. Figure (36) summarizes these con-
clusions. The lead angle,04., valu~e on the boundaries of Figure (36) can
be obtained from the geometry of Figures (34) and (35). It may also be noted
from Figure (34) that if two solutions exist for the lead angle, one is

* greater than 9Q0 and the other less than 900.

N Number of solutions

N1 LA 180 (9ASP
VM _ _ _ _ _ _ _ _ _ _

VT N 2

kOLA- 9

IIL

0 180 IvASP

Figure 36- interception Triangle Regions

In general, the lead angle, when it exists, can be obtained by applying the V1

Sine Rule tr' triane-le ATC in Figure (32).H
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sin OL T-sin 'ASP (1492)

-The logic associated with Figure (36) must be used to determine
whether there are no Lolutions, one solution, or two solutions.

The tracking angle 6T is given by

=1 8oOO AP -e L (1493)

Again, it may be noted that in eq. (1493) and the remainder oi this
section that there may be two solutions for the lead. angle and hence two
different interception triangles.

teApplying the Sine Rule to the interception triangle once more, we

obtain tetime to collide

Sin 6 TA sin 0 LA (1494)

R AT VT TC

RAT sin OLA
=VT sin 6TA (1495)

The vector distance, TC, in Figure (33), the target distance to
collision vector, can be wrritten

ART~ = (UeT"i + VeT-j + WeT. k)TC (1496)

Summing the line-of-sight vector and the target distance to collision vector,

we obtai~n the missile dIistance to collision vector, A11M.

ARM (XA +Ue TC)i +(YA + VeT T)j +(ZA + We TC)k

(1497)

The magnitude of' this vector must be
a'-

ARM =VM.TC (1498)

The interceptor velocity vector is

V ue-i + ve-J+ wek (1499)
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•-• IThe angle between the lead pursuit course and the interceptor velocity is

Sil the total steering error, ELA and can be obtained from the scalar product
i•of V and ARM A!|C)

SUe (XAT + UeT TC) + Ve (YAT + VeT TC) + We(ZAT + WeT T)(500)
S~~Cos f v c

M C7

! m' Constraining this angle to zero will result in a lead aingle

•,• attack.
-- l

:ii d. Line-of-Sight Attack
Th nlIn a line-of-sight attack, the interceptor velocity vector must be

ii parallel to the line-of-sight vector. The line---'- ight steering error,......
"theLO t srcan be found from the scalar product

os AT T C e XAT + e • ++ AT + e C (Z500

LA = V IJVM T A IR

•! • Constraining this angle to zero will result in a line-of-sight attack.

de. Cmponents of Line-of-Sight Aad LeadckPursuit Intercetion

parlll In the notation of the previous section, a line-of-sight intercep-
tion would be obtained by constraining the heading angle E to zero and

Slimiting the distance between the vehicles, R.AT If these 2wo quantitiesa

cos •. AT e ATweA

were used as constraints and the trajectory termina linge-of-sight yatack.
this would be all that would be required. In nractice it is sometimes con-
•l venient to change cutoff functions. This can be useful as a check on whether
lior not the true optimum has been obtained. Also, if the problem is not con-

"verging sufficiently fast convergence can sometimes be improved by changing
such a thing as the cutoff function.

Additional cutoff functions can be provided for the interception
problem by resolving the heading error into two components; one in the azi-
muthal plane (the horizontal plane containing the interceptor), the other in
the elevation plane (the vertical plane containing the interceptor and the
line-of-sight vector). To achieve this resolution of the heading error, we
must first express the interceptor velocity vector, V , and the line-of-sight
vector, AR, in the local geocentric-hori7zon coordinate system. Let T9 be
the transformation matrix from the earth reference to local geocentric coor-
dinate system and define.
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If the inteceporis 4 ' trvln ln h ieo-ih etr
then

adAy - YPT0 (503)

thene

and- V tIaR0  (505)

where -AZ~

Y,= tan -1 Y A t an 2 (1507)
U 2 V 2AX + Y

0U;. Vg and Wgare available as Xg, YgZg

The above analysis applies equally well to the problem of stating
suitable conditions for a lead angle interception, except that in thisa
case the line-of-sigaht vector must be replaced by the missile coll4sion d*,-
%lance vector. Let the components of this latter vector in the (X - Z
system be (AXing, AYmg, AZmg), then from eq. P97) ;'g' g*

AXm XA + Ue Tg T 9 (508)

A~mZA + WeT

9~ 16eIAT+VeT c.

For a lead angls- course,

ai a - =0 (509)LA I LA

and
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where
0LA ta 1  AYm

tand= -AZm
YLA

YLA A~mg + Amg2(512)

9I 9

f. Weapon System Characteristics

The weapon system constraints appear in the form of a maximum launch

range and by the permissible steering error at launch.

The missile aerodynamic range calculation, which is applicable to K
the Sparrow and Sidewinder air-to-air missiles, has been added to the program
in the form,

A1 + A2 logeP

a = A A 1  + A 5 logP(A 6 + A7 Vc + A8 V)
AA logeP + A5 log2 eP

+ A9 + A1 0 Vc + All V

Vc < V * Rv (513)

where P is the atmospheric pressvre and Vc the closing speed, and Rv is a
constant. If the inequality is nct satisfied, then the Ai are replaced by
Bi where Ai and Bi are two sets of constants. In addition, Ra may be
limited by such factors as maximum and minimum missile seeker range so that
we always take

'min a _max (5...

The minimum range will bz assumed to be of the form

R. =D1 + D 2 R + D V (515)

The quantity Vc in eq. (513) is the closing speed. This is the

rate of change of the line-of-sight vector magnitude in the negative AR
direction. It can most easily be computed by taking the difference of the
target and interceptor velocity components along the line-of-sight.

Vc -(VT - V) (516)
ARI

= (JeT - Ue)AXe + (VeT- Ve)AY,• + (WeT - We)AZe (517)

K a - -~ - - I -RIi(517*
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The allowable steering error will be programmed in the form

SE= (CI + C2 V + C3 logeP , eRa (518)

In the above expressions, the particular missile employed is determined

by the A.,Bi,Ci ,Di andf(1Ra\ used.

11. Orbital Coast Trarsformation

A particular h-transformation has been programmed in order to speed
up the integration of cert,.in orbital problems and also to dcIronstrate an
additional application of the h-transformation. This transformation elimi-
nates the need to integrate a coast in an orbital transfer problem if the
earth is assumed to be a nonrotating sphere.

In order to make the transformation it is necessary to compute some
orbital parameters. These are the length of the semimajor axis, a; the

WE .eccentricity, e; a parameter, p; eccentric anomaly, E; and true anomaly, TA.
These parameters are computed from local geocentric coordinates at the be-
ginning of a coast. The change in E d ring the coast completely determines
the terminal conditions of the coast. Thus, AE added to the list of state
variables, AE satisfies the equation

AF = 0 . (519)

An initial condition search i0 used to determine the optimal value of E.

The relationships before the coast are (Reference 41);

V2 (_Z
e (-g 2 g cos9 , (520)

V -~ (521)
g g gg

2

p = a(!-e 2 ) , (522)

TA=t an-i1  sin Y/(p + Zg) cos Y,(523)

and E = e cos T (521)
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After the coast the relationships are (the bar over a symbol indicates value
of variable before the coast):

E = E+ AE, (525)

(-z) = a(l-e cos E), (526)

Y = 0cs-PT /-)Vg sign (sin(E)), (528)

h = (-Zg) - (radius of the earth), (529)
g

9 = 0 + (tan- [p sin y/(p + Zg) cos y ] ) sign a, (530)
g

and

At = {AE- e [sinE- sin (E)]g (531)

where

sign x -1 if x < 0 (532a)

1 if x 0. (532b)

12. Search for a Reasonable Nominal

How rapidly a girven problem converges depends, among other things, on
the nominal set of values for the control variables. It is difficult to give
a set of simple rules for selecting a good nominal since that varies from
problem to problem. A nominal is considered bad if it takes the program an
excessively long time to converge. It should be noted that very slow conver-
gence can be cadsed by a number of other reasons .uch as: data errors, a
poorly posed problem, irregularities in data tables, etc.

The nominal input by the analyst is made up of straight line segments.

A good rule to follow is to keep it smooth. Unless the analyst has much
information regarding the problem, it is seldom of any advantage to make up
complicated control time histories. The program seems to make very rapid
progress from simple, smooth time histories.

A simple search routine has been programmed. This routine makes it
possible for the analyst to specify the nominal as a function of one parame-
ter and let the program search for the best value of this parameter. Here
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"best value" means the value that will give one constraint a predetermined
- • value, usually this constraint is a constraint of the original optimization

problem but it need not be. The parameter may either be the amplitude of
a given point in the table of control variable time 1'istory or the time
point at which a break in this table occurs. The paw.ameter may also be an
initial condition.

The analyst inputs two values of the parameter and the routine deter-
mines a third and fourth value by linear interpolation. At this point

Aitken's delta squared process is applied in an effort to speed up conver-
gence. The program retains the last point and one other point and then
repeats the process. This routine terminates when the constraint is within
a spec-Ified tolerance to the value specified for it. This is essentially
the same as the iteration routine used to calculate the equilibrium skin
temperature, which was described in Sub-section 8-f.

•II

III
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SECTION VI

"TROUBLE-SHOOTING

1. Introduction

Whenever any large computer program does not function properly it can
be very difficult to trace the source of the problem. With an iterative
scheme such as the one used in this formulation, it can even be difficult
to tell whether it is failing or not. N

This section is concerned with problems that might arise in the itera-
tive procedure used by this program. It is not concerned with the actual
data setup; a check list for this is provided in Volume II of this report.
Neither does it concern itself with problems that may arise in the trajec-
tory equations. Most of these problems can be traced to poor or inconsistent
table data or other data setup problems.

It is hoped that the section will accomplish two purposes. First, it is
intended to provide the user with a collection of first places to look for
trouble. Second, it is hoped that it will point out certain aspects of the
formulation that a casual reader might have missed, which will at least give v
.iim a start at pinpointing the difficulty.

CTLS2 has certain advantages for detecting problems. For example, in
Phase 0 it ignores the payoff completely. Thus, if it is unable to satisfy
a constraint, one knows that it is not a conflict between the constraint
and the payoff. If CTLS2 is usea and no serious trouble is present, one
s -ould expect the constraints to be satisfied after 5 to 8 cycles. An addi-
tional to 5 cycles should bring the payoff to within a few percentage points
of its optimum value. Additional gain in the payoff will be difficult to
obtain. If a particular problem takes longer than this, it does not neces-
sarily mean anything is wrong. There is a good chance, however, that a few

simple adjustments might cause the program to run faster.

2. Problem Formulation and Data Setup

Often an optimization problem may be formulated in more than one way to
answer essentially the same question. Any time a problem is converging
slowly or not at all, one should loo.-k critically at the formulation to see
if the constraints are realistic. There ar ases for which a different set
of constrainis may be substituted for the - iginal set without materially
altering the problem. There may, however, be a marked improvement in con- q
vergence.

Regardless of how the program fails to function, data setup should be

suspected. So many of the troubles that users have experienced with the
program have been treced to improper data setup that much care should be
taken checking the data before looking for other explanations of the troub-e.
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Failure to Return to Nominal

When the step size is sufficiently small the perturbation will be in the
linear range. In this case changes in the optimization functions should be
proportional to step size. It sometimes becomes apparent that as the step
size is being cut to zero, the trial trajectories are converging to a tra-
jectory other than the nominal for that cycle. In this case some sort of
unintended perturbation has taken place between the last cycle and the trials.
If such an unintended perturbation happens only once and DP2 is large enough
so that the intended perturbation overwhelms the unintended, then the user

-IWould not even be aware of the problem. If the unintended perturbation con-
tainues to occur on every cycle, it will almost certainly hang up the program.

One reason for an unintended perturbation is missing data, so that the
[ OaAýstate variables are not all reset to their initial values at the beginning

of each trial trajectory. This is usually easy to detect because the error
is so great. If, however, the missing data is the initial value of something
like y, and the initial and final values of the variable are close, the user
may not notice what is happening.

A second reason that the trials may be receiving an unintended perturba-
tion is because of the way the C-table (table of control variable time
histories) is stored and read. Suppose that values of the nominal C-table
are input at 0, 5, 10, ... seconds and the integration step is four seconds.
Values frcm the C-table needed for the integration are obtained by linear
interpolation. Values from the C-table that are saved and perturbed on the
trials are normally at the integration points. Since Runge-Kutta integra-
tion reads the C-table at mid-integration points, the values read at such
points as 6 and 10 seconds are not the same on the trials (for zero step
size) as on the- nominal. The same problem can result when variable step
integration is used because the program does not use the same step size from
•cyule to cycle._

z Either of the integration problems may be almost completely eliminated
5 J•-by saving values for the C-table at mid-integration points (see Volume II).

This: will doubl- the points in the C-table and increase the time in the
- reverse. If the problem is only on the nominal, the difficulty can be

removed by reading values into the C-table only at integration points.

4. Some Optimization Bmmctions Deteriorate for all Values of DP2

If enough optimization functions deteriorate enough for all values of Dp2

tried by the program, then the control system will refuse to accept any step.
This may be caused by an arbitrary perturbation which causes the failure to
return to the nominal as discussed in Subsection 3. It can also be caused
by incorrect sensitivities which are discussed in Subsection 7.

If a control variable is bounded a similar problem may arise. To see
how this can happen, recall that control variable sensitivities are computed
for each optimization function. The perturbation mode is a linear combina-
tion of these sensitivities so that the predicted change in each function
is the desired change. Thus the perturbation of a control variable at a
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being bounded it is possible that the expected deterioration is realized,
but the offsetting gain is not.

If an in-flight constraint is being used to bound the control variables,
the above problem ordinarily does not come up except in the case of throttle
setting, N. Thrust and mass flow are normally constant with respect to N
when N is greater than one and N is bounded to less than one. Suppose N is
a constant one for a large part of the trajectory. It may appear to the
program that some o utimi-ation functions will gain if N is increased above
one in part of the trajectory and the loss in the in-flight can be offset by
reducing N to less than- one in another part of the trajectory. In this case
all such losses will be realixze&, but none of the offsetting gains.

The problem is more likely to arise if a feature of the program is used
which bounds control variables by not allowing perturbations over the boun-
dary. For either type of constraint, if the problem is associated with N
as just discussed, it can be relieved if N is bounded by a value just
slightly greater than one. This can reduce the sensitivities with respect to
N on the boundary by a precise amount because of the numerical technique
used to compute partials. If the partials are reduced to 1/2 or 1/4, the
hang-up will seldom occur. The sensitivities must not be reduced to zero for
this would make it impossible for N to move down from the boundary if it
should need to.

If the problem arises when a control variable other than N is being
bounded it may be relieved by reducing the inverse weighting matrix on that
variable. This method has the disadvantage that the weighting matrix will
remain small after the variable has moved off the boundary.

See Summary List for additional explanations of this problem (Subsection
8). -

5. pýp I - Not a Good Approximation of the Identity Matrix

if I" I"p is a poor approximation of the identity matrix, then I1, is
either singular or at least ill-conditioned. Surprisingly large yff-diagonal
elements can result from roundoff in the multiplication of Iq4 I• and do
not usually indicate tne presence 3f troubles. Diagonal elements that do
not approximate 1.0 to several decimal places nearly always indicate prob-
lems. Both of the matrices I" and I- should be positive definite;
therefore negative elements on their diagonal indicates the problem is
serious.

I• would be singular if the constraints are dependent. Often if the
diagonal eleaients of IT$ in the ith and jth position are negative, the
problem is between the ith and the jth constraint. If the ith and the jth
constraint are dependent, then (Xip.G)k will be L constant multiple of

(AVjQG)k. If three or more constraints are mutually dependent, their

sensitivities will be linearly dependent, but this may be hard to recognize.
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Whenever I** is ill-conditioned it indicates that some sensitivities are
nearly linearly dependent. When this is true the program has a hard time
computing a perturbation mode that will produce the desired change in each
constraint. It may be that the program is simply moving through a region

t •-in control variable space where it is difficult to separate the constraints.
It may indicate that the constraints cannot be simultaneously satisfied,
i.e., the problem is impossible. I*i Iý, may not go bad even if it is
impossible to satisfy the constraints simultaneously.

6. Weighting Matrix and Nominal Selection Problems

Automatic weighting matrix selection is discussed at length elsewhere
in this -manual. What will be discussed here are some items a user might con-
dider if he suspects that the weighting matrix or the nominal is the sourceS~of his problem.

i If a problem is properly formulated and if all computations made by the

program are correct, then how the problem converges is the result of an
interaction among the control system, weighting matrix, and the nominal.
The control system will not be discussed here, but as noted elsewhere in this
section, a proper selection of control system parameters can greatly improve
rate of convergence.

One may begin with a given nominal and find that the problem makes
progress for a few cycles and then tends to hang up. If this happens the
usual procedure is to change some parameters, maybe the weighting matrix, and
try to get the program to go from where it hung up. There are situations in
which it may be better to return to the original nominal and start over with
a.new weighting matrix. The original weighting matrix may have caused the
program to perturb into a region from which it is very difficult to get to
the optimum. A new weighting matrix from the beginning may keep the program
out of this region. The better nominal is not always the one with che
smaller constraint error.

A poor nominal is very difficult to recognize, but fortunately is quite
rare for steepest descent. A nominal is poor because some obstacle seems
to be on the path the program takes in going from the nominal to the solution.
If the user can use his intuitive understanding of the problem to recognize
why the program is having trouble perturbing the trajectory from what it is
to what it should be, he will probably be able to come up with a nom-'-
that will keep it out of the problem region. If a new nominal is tz it
should be enough different so that an entirely different path to the I-
tion is followed. Thus, if the original trajectory was long, try a sr.,
one, if it was high, try a low one; if a constraint giving trouble has too
large a value, try to give it too small a value, etc.

One of the most important requirements of a weighting function is that
a reasonable perturbation is produced in all control variables. Thus, if
one control variable has received almost no perturbation after a number of

cycles, its inverse weighting matrix should probably be increased, perhaps
by an order of magnitude or more. If the perturbation of a control variable
oscillates between positive and negative values from cycle to cycle and this
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is the only variable receiving a signif'icant perturbation, then its inverse
weighting matrix should be decreased. T

The plots of the control variable time histories and the control vari-
able perturbation time histories (both of which are optional outpats, see
Volume II) are useful for spotting unfortunate trends.

7. Incorrect Sensitivities

The prcgram cannot possibly operate if the sensitivities are in serious
error. If the CTLS2 is being used and the sensitivities are in serious
error the program will normally reach a point where it is unable to complete
a cycle. If CTLS1 is being used, it will usually continue with rather poor
performance. For this reason the problem usually is easier to pinpoint and
less computer tinme is lost with CTLS2. Neither control system will converge
to an optimum solution. Note comments regarding I I-1 in summary list.

The sensitivities may be wrong for one of three reasons. First and
most common is a missing state variable which will cause the solution of the
adjoint equations to be incorrect. If this is the case the program may per-
form very well at first but then poorly. CTLS2 will probably be unable to
continue after two or three cycles. Second, the partials may be incorrect.
Incorrect partials in the F matrix will produce incorrect solutions of
the adjoints. Incorrect partials in the G matrix will not influence the
solutions of the adjoints but will produce poor Sa modes. Third, the reverse
integration may be poor.

A simple, and very conclusive, test for the accuracy of a solution of the
adjoint equations follows from a fundamental property of adjoint systems.
If A is any solution of the adjoint equations and 6a is zero, then the time
derivative of the scaler product Adx is zero. The vector dx can be obtained
by integrating two trajectories with the same C-table with an initial condi-
tion different. The perturbation should be large enough to be significant
but small enough to be in the linear range. Constraint changes in the second
or third place are adequate. (A.•)'dx is the predicted change in the ith
constraint and if it is correct at time zero, it is probably correct for all
time. If it is not correct at time zero, then the error is being introducedat and only at those poiints where the magnitude of (Xip,)'dx is changing.

This would only be true so long as a single step integration routine is used
in the reverse.

The adjoint equations are probably never accurate to more than one or two
decimal digits. If (N~in)'dx does not change signs or is not wrong by orders

of magnitude, it is probably not what's hanging the program up. If it
changes sign, then from that point in the trajectory back to the beginning
the control variable perturbation would actually be trying to move the
constraint in the wrong direction. If it is off by orders of magnitude, the
6a-mode wou.1d be so poor the program would probably be able to take only
very small perturbation steps.
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- 5: If the time derivatives of the state variables are printed out for the
• above two runs, then equation (18) may be used to check the F matrix since

Sa is equal to zero. A third trajectory for which 6a is nonzero but small
may be used to check the G matrix after the F matrix has been checked.

If the F matrix is correct and no state variables are missing, then the
problem must be in the integration of the reverse equations. If this is the
case one might try taking partials more often and reducing the integration
step size in the reverse. It is possible, out rather unlikely, that the

R~i adjoint equations are very difficult to integrate in the reverse direction.

•--= -••iIf any problem is traced to the reverse integration or the partials,
i--ithe user shouhld look for irregularities in the table data or any special func-

tion that is being used. If the program perturbs out of range of a table

The most' typical result of the above tests is to convince the user that
the trouble is not coming from the sensitivities. That may be reason enough
to make the test.

8. Summary of Typical Troubles

a. Missing or incorrect data such as:
S~(1) Missing state variable.

=•(2) Missing initial condition for state variables.

--- " •_b. Problem not formulated correctly.

c. Control variables receiving arbitrary perturbation between nominal
and first cycle.

d. Irregularities in tabular data.

Program works well for a few cycles, then slows down (values of optimiza-
tion functions change in correct direction for small perturbation step sizes):

m ia. Poor weighting matrix.

'K_--_

S•-b. Constraints being held too tight, or poor adjustment of other control
!L• -_system parameters. One or more constraints beingheld too tight might
.• -- prevent other constraints and the payoff from improving as fast as
-• they could.

c. The problem is impossible, that is, the constraints cannot be simul-
taneously satisfied. (Most easily recognized with CTLS2. It will
never leave Phase 0 so the payoff will not confuse things. )

d. Control variable time history oscillates, nearly always caused by
in-flight constraints. The problem is sometimes reduced or even
eliminated if v is used as thae control variable instead of t

ar eoyttt
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I • (flight plan program a as the identity function of FLUXA, make FLUXAI

a control variable and do an initial condition search on FLUXA). The

in-flight constraint of the square of the violation may give smoother A

control perturbation than the constraint of the violation itself.

e. Control variab-l~e time history has somehow become ragged (approximate
the time history t.-ith a smoother one and restart").

K AAl

Program works well for a few cycles, then stops completely (values of one or
more optimization function move in wrong direction even for small perturbation

step sizes).

a. Missing or incorrect data such as a missing state variable.

b. Trajectory has been altered so that the range of some table has been

exceeded (for example, aero table).

c. Control variables receiving uninhended perturbation.

d. Sensimizities incorrect.

e. Irregularities in tabular data.

f. Constraints not independent.

Constraints quickly satisfied but user is not satisfied with rate of
improvement of the payoff.

a. Constraints are held too tight. (Very likely to be the problem.
Payoff can seldom improve rapidly unless constraints are allowed to

wander.) RO)

(1) If CTLS1 is being used it might help to increase WTOL and/or
decrease C i Note carefully which functions cause thd step

size to be-reduced and why.

(2) If CTLS2 is beinedncrease the belts (.i) on those

constraints whose wandering appear to be responsible for cut-
ting the step size.

b. If CTLS2 is being used on program control, the belts may have gotten
Payofftne sERRi's reduced) prematurely. (Convert to a realyst con-

trol and do not tighten belts.)

c. Poor weighting matrix.

Optimization functions discontinuous with perturbation step sizes. (Most
easily detected when CTLS2 is used.) st

a. Nearly always indicates the prispnce of some discontinuity, perhaps
an irregularity in some table or in some special function which is
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9'being used. This will not necessarily prevent the problem from

converging but will at -east slow it down.

I#, I;ý is a poor approximation of the identity.

a. Constraints dependent.

b. Constraints cannot be simultaneously satisfied.

c. Incorrect sensitivities.

d. (Rare) Sensitivities for different control variables differ by
several orders of magnitude (may be solved with weighting matrix).

71,1

4,4
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SECTION VII

RECOMMENDATIONS FOR FURTHER INVESTIGATIONS

The following recommendations are intended to indicate directions that
future development of the program could take which might prove profitable.

a. The inclusion of the h-transformation and initial condition search
has made it possible to use the program to optimize design parameters. The
approach should now be applied to particular problems or classes of problems.

b. Tha maneuvering target option provides a means of optimizing a pur-
suer attempting to intercept a target vehicle following a fixed trajectory.
The path of a target attempting to evade a missile following a fixed guidance
law could be optimized by adding the necessary additional differential equa-
tions.

c. Steepest descent is a very useful and powerful technique for solv-
ing trajectory optimization problems. It is very tolerant of poor starting
nominals, but has the disadvantage of tending to slow down near the optimum
and occasionally it gives all appearances of having converged when the solu-
tion is nonoptimal. There are techniques, of higher order than steepest
descent, which have nearly the opposite characteristics. These techniques
are very intolerant of poor starting nominals (they often fail to converge
at all) but behave very well in the neighborhood of the optimum, and are
much less likely to converge to nonoptimal solutions. A hybrid scheme which
would use the present program until it begins to slow down and then switch
to a higher order technique could materially reduce the machine time, reduce
the possibility of converging to a false optimum, and increase the range of
problems for which the program would be useful.
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APPENDIX A

The paper "Kutta Integration with Step Size Control" by L. D. Earnest is pre-
3ented here in it, entirety because it does not seem to be generally avail-
able.

KUTTA INTEGRATION WITH STEP SIZE CONTROL

By L. D. Earnest*

In programming digital computers to perform step-by-step integration, it is
advantageous to use methods which do not require preceding function values
to be known, For maximum effectiveness, such methods must include some
means for estimating the truncation error, so as to provide a criterion for

the automatic selection of step size. From an approach which was generalized
by Kutta, processes are developed satisfying these requirements with accuracy
of orders three and four.

1. General

Many problems of practical interest lead to systems of ordinary differ-
ential equations with initial conditions. Missile simulations, for
example, often require the solution of more than a score of first order
simultaneous equations. The solution of problems of this magnitude by
formal or transform methods is generally not practical even when it is
possible, which is seldom.

Integration, like any operation involving infinitesimals, cannot be per-
formed in a digital computer, except in a limited sense. For many prob-
lems, however, it is sufficient to obtain an approximate numerical tabu-
lation of the dependent variables at specified intervals of the independ-
ent variable. The methods used to obtain these tabulations are of two
general types:

a) Multi-Step methods use preceding function values (i.e., the history
of the solution) to help predict the next value.

b) Single-Step methods carry out each step as if working from initial
conditions.

For hand computation, multi-step methods generally require less work than
do single-step methods of comparable accuracy. For automatic computation,
there is no obvious speed advantage of one approach over the other,
although single-step methods are generally simpler to program. "Stability"
considerations also seem to favor the single-step methods (e.g., seeab
Rutishauser , Hildebrandb. and Carrc). Included in this groiup are the
methods of Euler, Runge, Heun, and Kuttad, among others. The development
below is an extension of the work of Kutta.

*Staff Member, M. I. T., Lincoln Laboratory
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It will be seen that each of the caser considered yields a family of
integration form=las. As much as possible, these formulas and their
associated truncation error estimates are stated in parametric form.
In all cases the selection of particular values for these parameters
is completely arbitrary, although consideration of higher order error
terms generally favors values in the range zero to one. Particular
formulas of interest are indicated.

2. Errors

If a set of differential equations were integrated several times over
some region using a particular integration method, word length, and
rounding method, but with various step sizes, a plot of the absolute
value of the total error in any one variable as a function of step size
would likely resemble Figure 1.

~I

Total
Error

E

hl h2

Step Size

FIGURE 1

The shape to the left of the minimum point is largely a result of round-

ing error (caused by rounding off the results of arithmetic operations
to a finite number of digits). The shape to the right of the minimum
point is a result of truncation error (caused by the fact that the inte-
gration formula can only approximate true integration).

If the maximum permissible error were less than that of the minimum point,
there would be no Value of step size which would satisfy the requirement.
In order to obtain the required solution, it would be necessary to in-
crease the effective word size, or use a more accurate integration formula,
or both. This would lower the error curve so that it would intersect the
line of maximum permissible error.
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siz bewee h1 andh 2 would suffice. In the interest of speed, it would
* be preferable to choose a value near h2 .

i The considerations above may be of general interest, but are of no value

when faced with a practical problem, since no error curve is available.
While it is possible to estimate the magnitude of the truncation error,
accurate rounding error estimates are not readily obtained. If it is
assumed that the error curve does pass below the maximum permissible
error for some range of step sizes, then it is desirable to work in the
right hand portion of this interval, where truncation error is dominant.
For this case, then, the step size may be selected on the basis of a
truncation error estimate alone.

•i •The development below is based on the assumption of negligible rounding
error. Clearly, the growth of rounding errors in numerical integration

S•" processes deserves further study.

S3. Available Error Estimates

i • There are several approaches to the estimation of truncation error. Prob-

e ably the safest quantity to use would be an upper bound, similar to those
• • derived by Bieberbache, Lotkinf, and Veivodag, for the so-called Runge.-

-• Kutta rule. Unfortunately, the computation of these bounds requires quite
•i a bit more work than the basic integration process.

S~Another approach, sometimes called Extrapolation to Zero Grid Size, has

• been adapted from Ri1chardsonh. The basic idea is that each interval is

•: integrated using two different step sizes, then the two values at the
* end of the interval are compared to yield an improved guess at the true

I f the maiupemsiluse error wrEtefoFiu errory te

alue te variable truncation estimate. The ero esti-
mate indicates only the probable order of magnitude of the true error.
This process requires about three times the computation required by the

Sbasic integration formula, whichever one is chosen.

i A third approach is frequently used in conjunction with a second order

integration process known as the Modified Euler Method. In this process,
the truncation error estimate is obtained with very little computation

~~beyond thtrequired by tebscintegration process., ti h purpose

asue that ththorcre doesi pas blwtemxumprissible

here to extend this simple approach to the third and fourth order methods
of Kutta. To illustrate the principle, a generalized second order method
Fis developed below.

c. Se iond Order Methods

The single step method which is perhaps the easiest to understand is the
Taylor series expansion. Consider a set of N first order differential

equations of the form e

ably ttes

di b

Kutta~~~ ~ ~ ~ rue notnaey h omuaino teebud rqie ut

a bi mor wok thn th baic itegrtio proess
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dyVi

=fi(Z,YlY2, ..... ,yN) (1 1,29 ...... N)

when x = xO. Letting x - xo = h, the Taylor series expan 1 f he

dependent variables about x0 take the form

'h ,, h 2
Yi(Xo+h) =Yi(xo) + Yi(xo) .,+ Yi (xo)•,+..

h2 [ afi + _ af fJ ]Yio x axf]X - -Xdyj

+ ........ (i=1,2 ..... ,N)

where the quantities in brackets are to be evaluated at the initialpoint (xo,h ylit the ....i con"

If some appropriate small value were chosen for the step size, h., expan-
sion (1) could be applied repeatedly to generate the desired tabulation.
It can be seen, however, that the evaluation of the second order term

would be cumbersome for differential equations of any complexity. If it is
desired to consider higher order terms, the Taylor series approach be-
comes progressively more complicated.

Instead of evaluating multiple derivatives at the initial point, as
above, it would be simpler to evaluate the first derivative at multiplepoints. In particular, for a second order processt assume the form

yi(xo+h) = yi(xo) + akiO + bki (i=1,29 ....... N)

I ~ ~~~~~where ki= hfi(xYo2,...,y )

kil =hfi (xo + mh, ylO + mklo0 Y20 + mk20'

l........ YNO + mkNO) (2)

The coefficients a, b, and m are as yet undetermined. In order that this
method have second order accuracy, the Taylor series expansion of (2)
must match the right hand side of Lequation (o) term by term through those

involving h.
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Expand only if a + (3)

i ii, a+b1l

'bm 1/2 (4)

Since there are two equations and three unknowns,there is a family of
second order methods corresponding to equations (2). Choosing m as the
independent parameter, equations (4) give

2m-1
2m

b~1 (5)

For a truncation error estimate, Ti, assume the formula

Ti =akio + kil (6)

where a and 0 are analogous to a and b. A reasonably conservative
truncation error estimate is obtained if equation (6) approximates the
second order term of the Taylor series expansion. Expanding Ti in a
power series, equating the coefficient of the first order term to zero,
and the second order coefficient to the corresponding one of equation (1)
gives

a+8 0
I8m = 1/2

Solving again in terms of m:
1

2m

1 (7)
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Table 1 summarizes the results so far and lists two particular cases of
Sinterest. Solution I is the general case. Choosing m = l(case Ia)
"gives the well known Modified Euler Method. For any derivatives, dyi
which are given as explicit functions of x alone, this method dx
reduces to the trapezoidal rule. Ib is another case with particularly
siple form.

Case

Variab I Ia Ib

"m m 1 1/2

a 1- 1/2 0
1m

b 1 1/2 1S~2m

2m- -1/2 -1

1
B1 1/2 1

TABLE 1. SECOND ORDER METHODS

5. Third Order Methods

Historically, the first single-step integration method with third order
accuracy was that of Runge, which required four evaluations of each
derivative per step. Both Heun and Kutta generalized this approach in
a manner requiring only three evaluations. Since the work of Heun is
contained in the more general system of Kutta (corresponding to cases
where n = r, below) only the latter will be considered here.

Assume a formula like that of the last section, but with one additional
evaluation.

Yi(xo + h) = yi(xo) + aki 0 + bki 1 + cki 2  (i=1,2 ..... ,gN)

where

kio. hfi (Xo' Y10 Y2 0 ' . . . . . . YNO)

kil hfi (xo + mh, yI 0 + mkl0' ....... YN + mkN)

k. =hf. (x + nh, y +(n-r)kl+ rkll ...... I
1(() y0  10 1 1

YNO +(n-r)kNO + rkl) (8)
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•i •<Proceeding as before, the expression for Yi(x0+h) is expanded in a
•! power series. The requirement of third order accuracy means that this
I'} system must match the Taylor series expansions of the functions, Yi,

through terms involving PL. It can be shown that this will be true
•: if and only if the following equations are satisfied.

i bm + cn =1/2

ii i bm2 + on2 = 1/3

crm = 1/6 (9)

SSince there are fou-r equations and six unknowns, there are two degrees

i of freedom in the system. Choosing m and n as the irdependent param.-
i eters, the general solution of equations (9) is listed as case I in

|• i,,•Table 2.

ii •In obtaining the general solution, it was necessary to assume that m. Ot0

""2/3, or n and n #0. For certain combinations of these values, equations

(9) are linearly dependent, which leads to special cases hroving one
idegree of freedom. Choosing r as the supplementary independent param-

•=eter, these special cases are listed in Table 2 under II and III.A

ii i i'In seeking a truncation error estimate to complement the third order

methods, one logical approach is to attempt to approximate the third
order term of the Taylor series expansion with a linear combination of -

the three derivative evaluations. This would be analogous to the second
order error estimate derived above. Unfortunately, this3 approach leads

to incompatible requirements.

~A

to the system. That is, assume

STi =ak0 + Okl +yk2 + 6k3 (10)

S•iwhere k. is actually k0 of the next step. This causes no loss in
•-- •generally. It simply Helays the error estimate on a given step until
S• the beginning of the next.

Proceeding as before, the expression for Ti is expanded in a power series.

poeIt is required that terms through thi one in aving h2 be zero, while

the coefficients associated with the h3 term must equal the correspondingsscoefficients of the Taylor series expansi•n (equation o). This leads to

ia olithe following set of conditions.
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Variabl I Ia

r n~m-, r

b 3n- 3r- 2 2

2-3m 1

r~n-m-n 4r 4r2

3m+n-3mn-32 1 r-1 1
3mn 2 2r

23n- 13r- 3 4

-3m- 1 11

4. 3m3n-3m.-2 1r 2r2

TABL 2 2

THIRD ORDER 3 hO

3mn-T T
_____ ____

IF21

3n~n-n) 2r2r -

6 1 1110

4 _______ _______________ ______ ____-St_
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c+ +yn+ 6=0/

yin + 6(bm + cn) =1/6 (11)

Since there are four equations and four new unkncwns,equations (11) are
solved in terms of the same parameters used before. The results are
tabulated in Table 2 for each of the cases considered above.

Case Ia is a particular method of interest. This inethoa can be seen to
be analogous to Simpson's rula, even though it is generally of third
order accuracy only.Ai

6. Fourth Order Methods

N ~
Following Kutta, assume a fourth order integration method of the form

yi(x + h) yi(x)+ ak1  + bk 1 + ck + dk.

where

k =hf.(x0,y ,(i1-,2 .... N)
io 1 10' Y2O'*** YNO~

k =f~ + mh, y + mNi hkx 0 y 0 ink10 . Y k 0
i2i 0 10 NO+rk'o

k hf (x + nh, y1  + \n-r~k1  11 .

k hf (xO + ph, y1  + (p-s-t)k1  + sk1  + tk1 .  . .  (12)

in order to determine the restrictions on the coefficients (a, b, c, d,
in, n, p, r, s, and t) , thie above system is expanded in a power series
and required to agree with the Taylor series expansion of yi through
terms involving h4. This yields the following equations;

a +b + c + d 1

bin + cn + dp =1/2

bin2 + cn2 + dp2 1/3

cnn + d(sm. + tn) = 1/6

bin3 + cn3 + dp3 =1/4

crinn + dp(sin + tn) =1/8

cnn2 +d(sm 2 + tn2) =1/12

dtrm 1 /24 (13)
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Since there are eight equations and ten unknowns, equations(13) possess
a two parameter family of solutions. Solving in terms of m and n,
expressions for the other parameters are listed under case I of Table 3.
In addition to this general case, there are special cases, as before,
each possessing one degree of freedom. These result from certain sets
of equations (13) being linearly dependent for particular values of m
an n. The special cases are listed under II, III and IV, of Table 3.

For a truncation error estimate, assume a form analogous to that used
with the third order methods:

Ti = ak + ek + yk + 6k + sk (14)io il ik2  i3 i

where k. is the k of the next step. If this expression for Ti is* ih. iO
expande in a power series, the requirement that it reflect the magni-
tude of the fourtn order term implies that the coefficients of the first
three terms must be zero. That is

a + a +y + 6 + C = 0

Mm + yn + 6p + e = 0

Om2 + yn 2 + 6p2 + c = 0

yrm + 6(sm + tn) + e(bm + cn + dp) = 0 (15)

Note that the fourth order term of the expansion of Ti is not required
to match the corresponding term of the expansion of yi. This is done
simply because the resultant set of algebraic equations would otherwise
be over-determined. The error estimate under development is, in this
respect, similar to that of Extrapolation to Zero Grid Size mentioned
above. Both estimates give only a rough order of magnitude indication
for the truncation error.

Equations (15) are four in number and contain five new variables, hence
there is an additional degree of freedom. Solving in terms of e and the
previously selected independent parameters, expressions for a, 8 , y
and 6 are listed for each case in Table 3.
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It is desirable to have an indication of how well the error estimate
matches the components of the fourth order term of the expansion of Yi'
To assist in this let us define fitting coefficients, F, which express
the difference between corresponding fourth order power series coef-
ficients.

F1  = Om3 + yn+ + p c) - 1/24

F2 = yrmn + 6p(sm + tn) + E(bm + cn + dp)- 1/8

F3 = "[yrm2 + 6(sm2 + tn 2 ) + E(bm2 + cn 2 + dp2 )] - 1/214

F4 = 6trm + e[crm + d(sm + tn)] -1/24 (16)

The selected value of c should be one which minimizes these fitting coef-
ficients. More concise equivalent expressions are listed for each case
in Table 3.

The simplest and most widely used fourth order single-step method corre-
sponds to the choice t = 1 for case II(Table 3). This is the well known
"Runge-Kutta Rule", the title of which probably owes more to the inter-
esting sound the combination of names makes than to mathematical indebted-
ness to Runge. It may be noted that for differential equations which are
given as explicit functions of the independent variable alone, all
case II methods reduce to Simpson's rule.

The Gilli variant is also a specialization of case II, corresponding to
the choice t = 1 +A-17. There seems to be a widely held misunderstanding
to the effect that Gill's method requires fewer registers of erasable
storage per variable than do other fourth order methods of Kutta. It can
be shown that, excluding a truncation error estimate (as did Gill), all
fourth order methods have the same storage requirements (i.e., three
registers per variable). In any case, this is a relatively unimportant

consideration in stored program machines.

It can be seen from Table 3 that the truncation error estimate for case II
methods is quite simple. Since a = 0 = Y = 0, only the last evaluation
of the step under consideration, ki 3 , and the initial evaluation of the
next, ki0, are involved. From the form of fitting coefficient, F3 , the
choice e = 1 seems a good one for case II methods.

It may be noted that under the circumstances where the case II methods
reduce to Simpson's rule, the corresponding truncation error estimate
fails. That is, since the ki3 and the next kio are evaluated at the
same point, their difference is zero.

Another method of particular interest corresponds to the choice m = 1/3,
n = 2/3 under case I. This method bears the same relationship to
Newton's three-eighth's rule that the case II methods bear to Simpson's
rule. It can be shown that for a given step size, the fifth order error
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•n~j term a-ssociated with this formula is less than or equal to the corre-

I spondting term of both the Runge-Kutta rule and the Gill variant. This
iii Imight be expected from the analogy with Newton's and Simpson s rules.

4Y

7. Step Size Control

,• Given a particular integration formula and its associated truncation
error estimate, the control of step size is based on comparisons of error
estimates with corresponding error limits for each variab',e. If it is

-• desired to keep the truncation error below some fixed amount, then the
error limits should logically be constant. Similarly, if it is desired
to keep the relative error below some specified level, it is logical to
use a fixed percentage of the current magnitude of each variable for its
error limit.

Unfortunately, for any variable which oscillates, the "fixed percentage"
method automatically causes the calculations to bog down every time the
variable passes through zero, due to the fact that the error limit is
made unrealistically small. One way in which this difficulty can be cir-
cumvented is to base the error limit on a weighted average of previous
magnitudes of the variable. Such an average can be computed from a simple
recurrence formula.

Figure 2 is a simplified flow chart showing one way in which the step size
can be controlled. In this scheme, any time an error estimate is found
which is too large, the results of the step just completed are thrown out
and the calculations are repeated using a smaller step size. in practice,
it is generally desirable to put both a lower and an upper bound on step
size.

It may be noted that the decision on whether or not to increase the step
size is based on a prediction of what the error estimates would be with
the next larger step size. If a truncation error estimate, Ti, is of
order k, then the error esti.-%te T1 *, corresponding to the next larger
step size, h,* can be approximated by

Ti* = k T (17)

where h is the current step size. This formula is based on the assump-
S~tion that the kth term of the Taylor series expansion of Ti is dominant.

In applying this formula it is preferable to introduce a factor which
causes Ti* to be overestimated. This will tend to reduce time-consuming
premature increase in step size.

175

.... . .- .-...

terr.~ ~ asoiae wit this-- foml is less( thno qult hecre



x PL

0

Ea 4

W No

H H
00

m PLa

H- Cl) H

E-1

HE-i

IHH

E-44
0 ~~ N d I w-E-

__E- X-H-

U)) N - E-4
*ri Cl)

S......... 11

176

-71

~ -j



""-- 4-k

4'A"

• ","8. Examp~le

To illustrate the use of the methods described above, let us choose a
i• •'particular formula and apply it to a simple problem. In particular take
•.• .=•the Runge-Kutta rule (i.e., case II, Table 3 with t = C = 1). Equations
• (18) indicate the sequence of calculations to be performed in completing

S•a single step. Itcan be seen taforuisfeaabestorage per

, ,•.•variable are required: one to retain the initial values of the step,
S~Yi0, one for a current value of Yi, one to accept the current derivative
• I I • •evaluation, fi, and one to store linear combinations of previous evalu-

ations, iV

•I fio fi (Xo, Ylo' Y20, ..... ,YNo)

h

Yil Yi0 + 7 fluqi fi 0......
S~h

f~ +

•I I h
S. . - i2 Yi 0 fil qi2 qil + 2 i

8. Exa h2l

Toilusrae heus f2 th method+s Y2 Yescibe above. le uschos)

13 _I i2 qi3 qi2 +2i2

the une-Kutt rul (ioe., case =I al iht= ) qain

(1)indcae heseuec ofcluain =ob efre ncmltn

S!ations, qi*

'fi0 = fi(xo + h, y Y2 ..... iY, .)

h
Yi2. = + 6( ~i3 + +i q fili

~i2 f~(o + .~ y12,.... .. . . . ....

f f (x0 + h, ~l~y 2

Ti h(fih - qi4) (18)

If all truncation error estimates, T., are sufficiently small, the Yi
above become the yio of the next ste•, and, of course, the f. become
the fi 0.

To illustrate the utility of automatic step size control, the above
system is applied to the single differential equation

d X = •(19)
dx l+x

with the initial condition y(0) = 1. This problem was chosen by Milne
as a horrible example of what can happen to the Runge-Kutta rule when
truncation errors are ignored. It has the exact solution

y = (1+ x) 5  (20)
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First, a numerical solution of equation (19) is obtained using the Runge-
Kutta rule with a fixed step size, h, equal to 0.1. The rele..ive error
at the end of each step is shown in Figure 3.

If equations (18) are used in the form of Fig'.ure 2, that is, with automatic
step size control, the relative error can be better controlled, as shown
in Figure 3. In this case, the truncation error estimate was required to
be four orders of magnitude smaller than y at each step. This resulted
in a step size of .05 from x = 0 to x = .7 and .1 from there on. It can
be seen that the final error was four orders of magnitude below the value
of y.

9. Comparisons

If a second order integration method, such as the Modified Euler Method,
is used in conjunction with Extrapolation to Zero Grid Size, a formula
is obtained which is effectively of third order accuracy and which gives
a third order truncation error estimate. In such a process, each of the
differential equations must be evaluated a minimum of five times per step.
The third order formulas discussed above require three evaluations per
step.

If a third order single step integration formula is used in conjunction
with Extrapolation to Zero Grid Size, fourth order accuracy plus a fourth
order error estimate is obtained. This requires a minimum of eight deriva-

Stive evaluations per step compared with four for the fourth order method
described above.

It can be seen, then, that the integration systems presented above require
less computation than comparable methods in current use. Like most approxi- N'
mations, these formulas are not foolproof. It may be hoped, however, that
their judicious use will help improve the speed and reliability of numer-
ical solutions.
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* APPENDIX B

LIST OF COMPUTER SYMBOLS

1. Introduction

This Appendix contains an alphabetic list of the engineering symbols
used in this volume together with the corresponding Fortran symbols used in
the program described in Volume III of this report. The object is to pro-
vide the analyst with a ready reference to the computer symbol corresponding
to any physical quantity he may wish to calculate or specify by data input.

The definitions of each engineering symbol are given in the list of
symbols at the beginning of this volume, and are not repeated here. The
units and nominal values used by the program are given in the alphabetical
list of computer symbols in Appendix A of Volume iI of this report. Only
those symbols which are included in the program Common area or Directory are
listed. Those Fortran symbols which are in the Directory are available to
the analyst for input of values or use as optimization functions, if appro-
priate. The symbols in the Directory are identified in Appendix A of
Volume II. Fortran symbols shown with subscripts (e.g. Xi) are dimensioned
variables and may be input as arrays or as single values with the displace-
ment.

2. Symbol List

Engineering Fortran Engineering Fortran
Symbol Symbol Symbol Symbol

A ADT7G CD CD
D CDMNU

Se AE77F
CAL CL

A. AC(I)(i=l-12) CLMNU
A WAI(i) C CN

WA(i N

As RUBA(I)(i=I-4 ) Cp CPETB
e AKHR

A(t) AD77GI _

SCp CPS7B
I BA BA77D,BA77R s

A•,B. BC(I)(i=l-ll) C Y CY
A CYMNU

B.. WBI(I)

CIT7 CY
C177D CYMNU

CA CA CI CiC
A
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Engineering Fortran Engineering Fortran
SyblSymbol Symbol ~ y~bol

0 2 020 GYE7F

e

9z GZG"7F

-~c COEFRV g
q g(xac, T BFCDV

D DRAG? BFCIV

D7  D777D H HG

D aTD77F h HGC7F

DP 2  DELP2 I SP, AISPR

DP 2  D2PBAR N

2i ANCLR ,ANCLD
high D2PHI iDl

DP 2g D2PLO i1D~
low i 2DC12

D 1DiC 
1 3 DC13

'2 JAJG
D 3D3C 

DCJl

FX J27I DCJ2

FX FXE7P DCJ3
e3

t4.FyA FYA7P K AKGRAV

K K
F FYETP K1

Fz FZE7P
e k1  DCKJ.

~ I)GTAB02 k2  DCK2

ex GXE7F k 3DCK3

9GXG7F
g
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EnC-neering Fortran Engineering Fortran
Symbol py-m o I Symbol Symbol

LS FLUXA,FLUB P R. PREFP(I)(i=.1-3)

ALH1 p PA77P

AMACH QRATB

m AMASS QRATB1

q DYNPPmi, AMASFSq

m EXPRM R R777F ~4
q

R RAMTFmAMASZS AT

sRATIO RATIO
PMASS

mllp ~ PRMASS RcRC

s RD
rus S MASS

R RE77F

m ~~AMASSIRRG7

mAMASF1 R.. RMAXF

A2fEi RNT RC

A3~F1R RP77P

;ti AlMASi V
A2MASl 1'~

A3MASl R RPHLF

N AN RRPLZF

N1  AINl
1 r ~ RHN7F Z

NA12 S AREFF

3 AN3

n NSTATETTAR
T TE77P

n EXPVN
qT TSTGR

01 DC01 eRT

A7PT TR77F ar

PF PNALTY T TS77F
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Engineering Fortran Engineering Fortran
Symboll &Lbol Symbol Symbol

TVA TVACP vVD77FVACD

T TZB7P

e TSTGR1v
QRATEl gra VGRVF

TS77Rl MMX
TEX VM

TEXP TEXP VML EV

t TIME VP P7

maxVs

UUGV7F theo VTHEF
U UMATX V VE77F

U PHICR,PHICD VVE77Fl

e YE77F2

U UE77F
XE77Fl v DCV1

Ue UE77Fl 2 DCV2
XE77F2

v DCV3

1 1% WTRT
U2  DCU2 WET

VVAw WA7 E77F2
ke

V DCUl
,AT VA77F ZE1 F

VORAFDCW2

RAMTF1
w DCW3

(V1  v~ ) VXCSF
s XAT
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Engineering Fortran Engineering Fortran
Symbol Symbol Symbol Symbol

XD XD77N Zg ZG77F

Xe XE77F ZAT ZAMTF1

Xg9 XGG7F WeE77F 3

Xj AIFOSZE77Fl

Ze WE77F1
XAT Xk-MTF1 ZE77F2R

Xe UE77F Z ZG77Fl
XE77FJ.

a ALPHR,ALPHD
Xe XE77F2

UE7l8BETAR,BETAD MT

XgXG77Fl(XGG7Fl) y GAM7R,GAM7D

XAIFCS1 YAGAMAR,GAMAD

y CY YDGAMDR,GANDD

YAT YAT IGAMIR,GAMID2

YDYD77N GHDCR,GHDCD

eE7 YLOS GLSCR,GLSCD

Yg YGG7F AC~ DCPSI(I)

iAT YAMTF1 A~E ARC7R

YeWE77Fl AyL GGERR,GGERD

YE77F2 Aa LA SMERR,SMERD

g ~~~YG77Fl(YGG7Fl) LOSGRED

y SIDEP 6e DLTEF

ZAT ZAMTF 6s DLTSF
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c2s 
-PS p s POR

p
cSE 

0S7 SIG7R,SIG7D

eT EPTOl(I) aA SIGAR,SIGAD

c T21 EPT02(I) aDSIGDR,SIGDD

c T3i EPTO3(1) al SIGIR,SIGID

cTiEPTO4(I) cLASHEDR ,SHEDD

T5i EPT05(I) a LOS SLOSR,SLOSD

c T61 EpTo6(i) 00 SIGZD

BTHL7R,THL7D T rTAU

THASE ,THABD TTIMES

01 THTIR,THTID Pg PHIGR,PHIGD

el, THL7R,THL7D OL PHILR,PHILD

OLO THLZR ,THLZD OIJA PHLER ,PHLED

A AIAMLER ,ALMLED N0  DFENL

XT ALAMTR,ALAMTD ýs0  PHSZR,PHSZD

AT 1AIMT1R,ALMTlD OT PHITR,PHITD

T2 ALMT2R ,AUAT2D O'T, PHI*TiR ,PHIT1D

xT3 ALMT3R,ALMT3D O2PHIT2R,PHIT2D

49AMU OT3  PHIT3R,PHIT3DI ANUA7F '4 BWD SIBWD
p RHOAS ERSIERR

PeRHOEP FDSIFWD
HRFAB

p s HOSPNLODSINL

RHOP TOL SITOL
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